Age-dependent growth responses to climate from trees in Himalayan treeline

  • Achyut Tiwari
Keywords: Abies spectabilis, Dendrochronology, Growth-climate response, Treeline, Tree ring

Abstract

Tree rings provide an important biological archive for climate history in relation to the physiological mechanism of tree growth. Higher elevation forests including treelines are reliable indicators of climatic changes, and tree growth at most elevational treelines are sensitive to temperature at moist regions, while it is sensitive to moisture in semi-arid regions. However, there has been very less pieces of evidence regarding the age-related growth sensitivity of high mountain tree species. This study identified the key difference on the growth response of younger (<30 years of age) and older (>30 years) Abeis spectabilis trees from treeline ecotone of the Trans-Himalayan region in central Nepal. The adult trees showed a stronger positive correlation with precipitation (moisture) over juveniles giving the evidence of higher demand of water for adult trees, particularly in early growth seasons (March to May). The relationship between tree ring width indices and mean temperature was also different in juveniles and adult individuals, indicating that the juveniles are more sensitive to temperature whereas the adults are more sensitive to moisture availability. It is emphasized that the age-dependent growth response to climate has to be considered while analyzing the growth-climate relationship of high mountain tree populations.

References

Anfodillo, T., Rento, S., Carraro, V., Furlanetto, L., Urbinati, C. and Carrer, M. 1998. Tree water relations and climatic variations at the alpine timberline: seasonal changes of sap flux and xylem water potential in Larix decidua Miller, Picea abies (L.) Karst and Pinus cembra (L.). Annals of Forest Science 155:159-172.

Aryal, A., Hipkins, J., Ji, W., Raubeinhimer, D. and Brunton, D. 2012. Distribution and diet of brown bear in Annapurna Conservation Area, Nepal. Ursus 23:231-236.

Batllori, E. and Gutiérrez, E. 2008. Regional tree line dynamics in response to global change in the Pyrenees. Journal of Ecology 96:1275-1288.

Briffa, K. R., Schweingruber, F. H., Jones, P. D., Osborn, T. J., Shiyatov, S. G. and Vaganov, E. A. 1998. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 39:678-682.

Carrer, M. and Urbinati, C. 2004. Age-dependent tree ring growth responses to climate in Larix decidua and Pinus Cembrea. Ecology 85(3):730-740.

Carrer, M., Anfodillo, T., Urbinati, C., Carraro, V. 1998. High-altitude forest sensitivity to global warming: results from long-term and short-term analyses in the eastern Italian Alps. In: Beniston, M. and Innes, J. L. (Eds.) The impacts of climate variability of forest. Springer-Verlag, Berlin, Heidelberg, pp 171-189.

Churkina, G., Running, S. W. 1998. Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1(2):206-215.

De Luis, M., Novak, K., Cufar, K. and Raventos, J. 2009. Size mediated climate-growth relationships in Pinus halepensis and Pinus pinea. Trees 23:1065-1073. https://doi.org/10.1007/s00468-009-0349-5

Fritts, H. C. 1976. (Reprint, 2001) Tree rings and climate. The Blackburn Press, Caldwell, New Jersey.

Harsch, M. A., Hulme, P. E., McGlone, M. S. and Duncan, R. P. 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters 12:1040-1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x

Holtmeier, F. K. and Broll, G., 2007. Treeline advance - driving processes and adverse factors. Landscape Online 1:1-33. https://doi.org/10.3097/LO.200701

IPCC. 2013. Summary for policymakers. In: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M, (Eds.) Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge, pp 3-32.

Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin, Germany.

Körner, C. and Paulsen, J. 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography 31:713-732. https://doi.org/10.1111/j.1365-2699.2003.01043.x

Kullman, L. 2001. 20th century climate warming and tree-limit rise in the Southern Scandes of Sweden. Ambio 30:72-80. https://doi.org/10.1579/0044-7447-30.2.72

Kullman, L. 2002. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology 90:68-77. https://doi.org/10.1046/j.0022-0477.2001.00630.x

La Marche, V. C. 1974. Paleoclimatic inferences from long tree-ring records. Science 183:1043-1048.

Liang, E., Wang, Y., Eckstein, D. and Luo, T. 2011. Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200years of warming. New Phytologist 190:760-769. https://doi.org/10.1111/j.1469-8137.2010.03623.x

Liang, E., Wang, Y., Piao, S., Lu, X., Camarero, J. J., Zhu, H., Zhu, L. et al. 2016. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America 113:4380-4385. https://doi.org/10.1073/pnas.1520582113

Lloyd, A. H. and Fastie, C. L. 2002. Spatial and temporal variability in the growth and climate response of treeline trees in alaska. Climatic Change 52:481-509. https://doi.org/10.1023/A:1

Lv, L. X. and Zhang Q. B. 2012. Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest region. Journal of Plant Ecology 5:147-156. https://doi.org/10.1093/-jpe/rtr016

Mencuccini, M., Martínez-Vilalta, J., Vanderklein, D., Hamid, H. A., Korakaki, E., Lee, S. et al. 2005. Sizemediated ageing reduces vigour in trees. Ecology Letters 200(8):1183-1190. https://doi.org/10.1111/j.1461-0248.2005.00819.x

Mérian, P. and Lebourgeois, F. 2011. Size-mediated climate-growth relationships in temperate forests: A multispecies analysis. Forest Ecology and Management 261:1382-1391. https://doi.org/10.1016/j.foreco.2011.01.019

Qi, Z., Liu, H., Wu, X. and Hao, Q. 2015. Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China. Global Change Biology 21:816-826. https://doi.org/10.1111/gcb.12703

Rossi, S., Deslauriers, A., Anfodillo, T. and Carrer, M. 2008. Age-dependent xylogenesis in timberline conifers. New Phytologist 177:199-208. https://doi.org/10.1111/j.1469-8137.2007.02235.x

Schickhoff, U. 2005. The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In Broll, G. and Keplin, B., (Eds.) Mountain ecosystems: studies in treeline ecology. Springer, Berlin, Germany, 275-354.

Schweingruber, F. H. 1996. Tree rings and environment dendroecology. Haupt, Bern, p 609.

Sigdel, S. R., Wang, Y., Camarero, J., Zhu, H., Liang, E. and Peñuelas, J. 2018. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Global Change Biology 24(11):5549-5559. https://doi.org/10.1111/gcb.14428

Stainton, J. D. A. 1972. Forests of Nepal. Haffner Press, New York.

Szeicz, J. M. and MacDonald, G. M. 1994. Age dependent tree ring growth responses of subarctic white spruce to climate. Canadian Journal of Forestry Research 24:120-132.

Tardif, J. C., Conciatori, F., Nantel, P. and Gagnon, D. 2006. Radial growth and climate responses of white oak (Quercus alba) and northern red oak (Quercus rubra) at the northern distribution limit of white oak in Quebec, Canada. Journal of Biogeography 33:1657-1669. https://doi.org/10.1111/j.1365-2699.2006.01541.x

Tessier, L., Guibal, F., Schweingruber and F. H. 1997. Research strategies in dendroecology and dendroclimatology in mountain environments. Climatic Change 36:499-517.

Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T. and Prentice, I. C. 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America 102:8245-8250. https://doi.org/10.1073/pnas.-0409902102

Tiwari, A., Fan, Z.-X., Jump, A.S., Li, S.-F. and Zhou, Z.-K. 2017. Gradual expansion of moisture sensitive Abies spectabilis forest in the Trans-Himalayan zone of central Nepal associated with climate change. Dendrochronologia 41:34-43. https://doi.org/10.1016/j.dendro.2016.01.006

Wang, Y., Liang, E., Ellison, A. M., Lu, X. and Camarero, J. J. 2015. Facilitation stabilizes moisture-controlled alpine juniper shrublines in the central Tibetan Plateau. Global and Planetary Change 132:20-30. https://doi.org/10.1016/j.gloplacha.2015.-06.007

Wilmking, M., Juday, G. P., Barber, V. A. and Zald H. S. J. 2004. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology 10:1724-1736. https://doi.org/10.1111/j.1365-2486.2004.00826.x

Published
2020-08-18
How to Cite
Tiwari, A. (2020). Age-dependent growth responses to climate from trees in Himalayan treeline. Nepalese Journal of Zoology , 4(1), 16-22. Retrieved from http://www.cdztu.edu.np/njz/index.php/NJZ/article/view/78
Section
Research Articles