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Abstract  

Understanding fine-scale habitat use dynamics within species home range is crucial for long term 
conservation planning. We used multi-season occupancy models incorporating field and landscape level 
covariates to tiger camera trap data collected during the systematic periodic survey from 2013 to 2022. 
Habitat use probabilities varied across primary sessions, peaking at 0.56 in 2013 and dropping to 0.49 in 
2022, indicating negative and positive rate of change in tiger habitat use probabilities (average lambda 
λ2013-2018 = 0.60, - 40% decline; average lambda λ2018-2022 = 2.28, +128% increase) between survey period 
2013–2018 and 2218–2022 respectively. Local colonization probabilities fluctuated between 0.39 (SE = 
0.09) during 2013–2018 and 0.48 (SE = 0.04) during 2018–2022, while local extinction remained stable 
at 0.50 (SE = 0.005), suggesting high site turnover. The effects of covariates on tiger habitat use dynamics 
varied over time. Tiger habitat use probabilities increased with proximity to waterholes and distance 
from settlements and decreased with elevation. However, the influence of habitat productivity and prey 
availability on tiger habitat use was contrary to our expectations. Colonization probability increased with 
prey availability and proximity to waterholes. Habitat productivity positively influenced local extinction, 
contrary to a priori expectations. Our findings highlight the critical role of waterhole distribution in 
shaping tiger habitat use in water-limited landscape. Enhancing water and prey availability can support 
colonization, promoting long-term persistence of tigers. Tiger habitat use dynamics highlight the 
importance of targeted, site-specific conservation strategies aimed at enhancing habitat suitability and 
promoting landscape connectivity. We emphasize the importance of long-term, multi-year camera trap 
monitoring to track persistence of tigers across the Complex. The study’s combination of estimated tiger 
habitat use and grid-based approaches offers a valuable framework for implementing targeted 
conservation interventions.   
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1 | Introduction 

Understanding ecosystem dynamics that influence species 
persistence is crucial for effective conservation and wildlife 
management (Farris et al. 2016; Rota et al. 2016). Long-term species 
persistence is shaped by demographic factors such as birth, death, 
immigration, and emigration, as well as environmental covariates 
including habitat alterations, climate change, disease, prey 
availability, and human disturbances (Garcia et al. 2014; Farris et al. 
2016; Rota et al. 2016). Ecological variables such as prey availability 
(Everatt et al. 2019; Abade et al. 2020), water sources (Mondal et al. 
2013; Oriol-Cotterill et al. 2015), forest cover (Cristescu et al. 2019; 
Cimatti et al. 2021), and proximity to human settlements (Mondal et 
al. 2013; Abade et al. 2020), roads (Carter et al. 2020), and trails 
(Thapa et al. 2021) strongly influence the occurrence of large 
carnivores. 

Large carnivores, such as tigers (Panthera tigris), face severe threats, 
with populations declining to fewer than 5,660 individuals 
(Sanderson et al. 2023) and their geographic range contracting to 
less than 10% of its historic extent (Goodrich et al. 2022). These 
declines are primarily driven by poaching (Oswell 2010), land use 

changes, and human population growth (Wolf & Ripple 2017; Van 
der Weyde et al. 2018). Tiger recovery now largely depends on the 
protection and effective management of approximately 42 “source 
sites” within the broader Tiger Conservation Landscape (TCL), 
which forms the foundation for global tiger conservation strategies 
(Goodrich et al. 2022; Gray et al. 2023; Jhala et al. 2025). Ensuring 
the long-term persistence of tigers in these source sites is crucial for 
facilitating natural dispersal into new areas, particularly across 
South and East Asia (Qi et al. 2021). The multi-year surveys are 
essential for capturing dynamic processes and identifying key 
factors influencing species persistence and local population 
dynamics (MacKenzie et al. 2006; Magurran et al. 2010; Rosenblatt 
et al. 2014). 

Tiger population studies are often limited to a single-year camera 
trap survey designed to estimate key population metrics such as 
occupancy (Thapa et al. 2016; Shah et al. 2025), abundance, or 
density (Thapa et al. 2017; Shah et al. 2024) in Nepal. However, a 
single-year snapshot survey fail to capture the complex processes of 
local colonization and extinction that influence species persistence 
(Kuussaari et al. 2009; Wearn et al. 2012; Essl et al. 2015). To 
address this gap, we conducted three periodic camera trap surveys 
between 2013 and 2022, allowing us to examine tiger habitat use 
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dynamics and assess their response to habitat and anthropogenic 
factors using robust dynamic occupancy models, while accounting 
for imperfect detection (MacKenzie et al. 2006). 

In this study, we aimed to investigate the temporal and spatial 
dynamics of tiger habitat use and its underlying drivers within 
Bardia-Banke Complex, Nepal using detection and non-detection 
data from periodic camera trap surveys conducted in 2013, 2018, 
and 2022.  We applied single-species multi-season occupancy 
models (MacKenzie et al. 2006) incorporating landscape and field 
level covariates related to habitat, prey availability, water sources, 
and environmental characteristics to investigate factor affecting 
tiger habitat use over the period of time including local dynamic 
process such as colonization (also defined as new site use) and local 
extinction (also defined as site abandonment) probabilities over the 
sampling period between 2013-2022. We hypothesized that tiger 
habitat use over the years, increases with survey specific habitat 
productivity, spatial distribution of waterholes, and prey 
availability, and decreases with proximity to human settlements, 
while local colonization (and extinction) by tigers over the period 
positively (negatively) influenced by seasonal habitat productivity, 
spatial distribution of waterholes and prey availability (see more in 
method sections). 

2 | Materials and methods 

2.1 | Study area 

Bardia-Banke Complex (Area: 2,876 km²; N 270 58′13″ to 280 35.5′; 
E 80010′ to 820 12′19″) encompasses Bardia National Park (BNP), 
one of the 42 global tiger source sites (Walston et al. 2010), Banke 
National Park (BaNP) and surrounding forest areas (Figure 1). The 
East-West National Highway cuts across both parks, spanning 30 km 
in BNP and 72 km in BaNP, while the North-South Ratna Highway, 
power transmission lines, and an irrigation canal further intersect 
the landscape. It lies within the transboundary Terai Arc Landscape 
recognized as a global priority Tiger Conservation Landscape 
(Thapa et al. 2016). 

The Complex has played a crucial role in tiger recovery, with the 
population increasing from 18 individuals in 2010 to 150 in 2022 
(DNPWC & DFSC 2022). Prey density was estimated at 68.26 
individuals per km2 (CV = 15.06%, range: 50.8 - 91.6) in Bardia 
National Park and 29.01 individuals per km2 (CV = 26.13%, range: 
17.5 - 48.2) in Banke National Park in 2022 (Shah et al. 2024). 

Key ungulate prey species for tigers, leopards Panthera pardus, and 
dholes Cuon alpinus in the Complex includes sambar Rusa unicolor, 
chital Axis axis, wild boar Sus scrofa, and northern red muntjac 
Muntiacus vaginalis. In addition, the Complex is home to several 
threatened mammals such as Asian elephants Elephas maximus, 
greater one-horned rhinoceros Rhinoceros unicornis, gharials 
Gavialis gangeticus, sloth bears Melursus ursinus and river dolphins 
Platanista gangetica, along with over 500 bird species, many of 
which are endangered (Wegge & Storaas 2009; Shah et al. 2024). 

The Complex potential tiger habitat spans ~2,876 km² 
encompassing diverse subtropical deciduous vegetation, from early 
successional floodplain communities to mature Sal Shorea robusta 
forests, alluvial floodplain grasslands, rivers and both natural, and 
man-made waterholes (Barber-Meyer et al. 2013). Dense human 
populations surround the Complex, averaging about ~243 
people/km2 (CBS Nepal 2022).  

The Complex also contains crucial forest corridors that connect it to 
India's Katarniaghat Wildlife Sanctuary through the Khata Corridor 
and Suhelwa Wildlife Sanctuary through the Kamdi Corridor. 
Perennial rivers (Karnali, Babai, West Rapti) and over 50 ephemeral 
streams originating from the Churia Hills channel rainwater during 
the monsoon season but remain dry for the rest of the year (Shah et 
al. 2024). 

 2.2 | Methods 

We used National Tiger Surveys data of 2013, 2018 and 2022. We 
followed a grid-based approach to design the camera trap survey for 
detection and non-detection of tigers and prey species. We sampled 
2,876 km2 of potential tiger habitat and divided the study area into 
four survey blocks with each block being divided further into 2 × 2 
km2 grid cells and we deployed camera stations within each cell 
(Figure 1). One pair of digital cameras were set in each grid mounted 
on wooden poles or trees, approximately 45-60 cm off the ground 
and ~3 m away on either side of existing human and/or game trails. 
No bait or lure was used (Shah et al. 2025). Cameras were set to run 
24 hours a day for an average of 15-20 days in each block 
(Supportive Information S2).  We set camera stations at 1 to 4 km 
apart between two adjoining grids of 2 × 2 km2 at locations that 
would have the highest probability of photo-capturing of tigers 
(Thapa & Kelly 2017). Cameras were programmed to record a burst 
of three photos in 30-second intervals. We surveyed the entire study 
area during winter season from November to early February in 
2013, 2018, and 2022. 

2.3 | Data analysis 

We used the multi-season occupancy model (MacKenzie et al. 2003) 
to analyze the trends in tiger habitat use dynamics. We employed 
multi-season, single-species (dynamic) occupancy modeling, which 
explicitly account for spatial autocorrelation in detection within 
each grid cell (Hines et al. 2014), where ‘season’ refers to 
consecutive yearly surveys. This approach explicitly models yearly 
changes in the probability of occupancy (ψ) as well as probabilities 
of local colonization (γ) and extinction (ε). Local colonization is 
defined as the probability of an unoccupied site during time t 
becoming occupied at t+1. Conversely, local extinction is defined as 
the probability of a previously occupied site during time t becoming 
unoccupied at t+1 (MacKenzie et al. 2006). This modeling approach 
employs a Pollock's robust design, meaning parameters (detection, 
occupancy, colonization, and extinction) are geographically ‘closed’ 
to movement (e.g., immigration and/or emigration) during surveys, 
but ‘open’ between survey years (MacKenzie et al. 2006).  

For animals with larger home ranges than our 2 × 2 km2 grid cells, 
such as tigers, occupancy models yield reliable estimates of 
probability of detection and habitat use (rather than true 
occupancy) at finer spatial scales (Mackenzie et al. 2018). Within the 
home range, occupancy can be seen as a metric of intensity of habitat 
use, which has been successfully used in earlier studies for tigers 
(Sunarto et al. 2012; Shah et al. 2025), dholes (Srivathsa et al. 2014), 
and elephants (Thapa et al. 2019). In this context, each cell can be 
used to gather information about patterns in space-use within the 
home-range or habitat use (Kshettry et al. 2017). During each 
survey, tiger detections were coded “1” and non-detection as “0” for 
each grid cell to develop the detection history. We have a maximum 
of 16 sampling occasions within each grid cell in each of the three 
primary sessions. In the detection histories matrix, in situations 
where there was no survey a missing value entry (-) was 
incorporated into the matrix.  

We also used the combination of one field level and four landscape 
level covariates (Table 1) to assess its influence on tiger habitat use 
dynamics across the grid cells in the Bardia-Banke Complex. These 
covariates include prey photo-capture frequency as an index of prey 
availability (PREY) influencing the tiger habitat use (Barber-Meyer 
et al. 2012; Harihar & Pandav 2012). We used the prey index as 
detection rate (number of photo events per 100 trap nights) of prey 
species at each camera station as measure of prey availability 
(Carter et al. 2012). Landscape covariates such as elevation (ELE) 
was found to influence the distribution of tigers along its potential 
habitat (Thapa et al. 2022). We computed elevation from digital 
elevation model with 90 m resolution data (downloaded from 
https://srtm.csi.cgiar.org/). Remotely sensed vegetation indices 
such as index of vegetation characteristics that indicates the amount 
of primary productivity: Normalized Difference Vegetation Index 



Nepalese Journal of Zoology, 9(1)  Shah et al.   

20 

(NDVI) was extracted for winter (Thapa & Kelly 2016). Distance to 
the nearest waterholes (DWAT) from the grid cells were extracted 
from field survey and park records. We also used the distance to the 
nearest settlement (DSET) extracted as a surrogate measure of 
disturbance at the landscape level (Thapa et al. 2019). All variables 
were extracted from GIS public domain, and values were averaged 
at the grid cell level.  We hypothesized tiger intensity of habitat use 
over time (aka probability of habitat use) to be positively influenced 
by prey availability, NDVI, distance away from settlement, and 
negatively influenced by elevation, distance to waterholes (Table 1). 

We fitted a set of 39 candidate models to evaluate hypotheses 
regarding the effects of covariates on probability of habitat use (17 
potential models), colonization (8 potential models), extinctions (7 
potential models) and detection processes (7 potential models) in 
Program PRESENCE Ver 2.13.47 (Hines 2006). Prior to modeling, all 
covariates were screened for collinearity. Highly correlated 
variables (|rs| ≥ 0.70) were either removed or not used in 
combination within the same model (Supportive Information S1). 

All covariates used in modelling were normalized using the z 
transformation and/or scaled using a constant value (Thapa & Kelly 
2016). We used a step wise approach to model the parameter of 

interest at the grid cell level (Karanth et al. 2011; Mackenzie et al. 
2018). In the first step, we modelled detection probability either as 
constant/season or varying by covariates using a global model 
(model containing all the five covariates: DWAT+NDVI+PREY+ 
DSET+ELE). In the second stage, we fixed the top model for detection 
and built models using different combinations of covariates 
influencing probability of colonization. We followed similar 
approach, we fixed top model for colonization and built models 
using different combinations of covariates influencing probability of 
extinction. At last, we fixed top model for detection, colonization, 
extinction, and built models using different combinations of 
covariates influencing probability of tiger habitat use.  

For model selection, we ranked all models using Akaike’s 
Information Criterion (AIC) and chose the best model based on 
lowest AIC scores. We considered all models with ΔAIC < 2 as 
competing models (Burnham & Anderson 2002). We used model 
averaging techniques to determine the grid cell-specific 
probabilities of habitat use (ψ), colonization (γ), extinction (ε), and 
detection (p) considering all the competing models. The value of 
untransformed coefficients (i.e., betas, β) reflects the magnitude and 
direction (sign) of the influence of covariates on the probabilities of 
tiger habitat use (ψ), colonization (γ), extinction (ε), and detection 

Table 1. Field level and landscape level predictor variables (including their justification) evaluated as covariates affecting tiger habitat use dynamics in the 
Complex. The “+” and “-” indicate positive versus negative a priori predictions regarding the hypothesized direction of the effect of the covariate on 
probabilities of habitat use, colonization, extinction, and detection of tigers. 

Covariates General justification for the selection 
of the covariates 

Description Hypothesized a priori 
relationship 

Ѱ γ ε p 

Prey index 
(PREY) 

Tiger habitat use is largely influenced 
by prey availability, with wild ungulate 
density serving as a key determinant of 
tiger presence (Karanth et al. 2004; 
Karanth et al. 2011). This prey index 
was used as a measure of relative prey 
availability, rather than estimates of 
prey occupancy, because it provides 
more detailed information regarding 
the local activity levels of prey species 
(Shah et al. 2024). 

 

We sorted all the camera trap pictures of wild prey 
and considered photos as independent events if they 
were 30 minutes or more apart, unless we could tell 
there were distinctly different individuals, as is 
commonly done in camera trap studies (Di Betti et 
al. 2009). Computed from detection rate (number of 
photo events per 100 trap nights) of prey species at 
each camera station as an index to prey availability 
(Carter et al. 2012). Capture events of all prey 
species were summed for each location to obtain 
prey index.  

+ + - + 

Elevation (ELE) Tigers are primarily found in the Terai 
region at elevations below 700 meters 
(Thapa et al. 2022). Low-elevation 
areas are favorable for tigers and their 
prey base, as highlighted by Karanth et 
al. (2009), Kafley et al. (2016), and 
Thapa et al. (2021). 

Computed using the Shuttle Radar Topography 
Mission (SRTM) digital elevation model-90m (Riley 
et al. 1999) 

- - + - 

Normalized 
Difference 
Vegetation 
Index (NDVI) 

NDVI has been used as a measure of 
vegetation primary productivity 
(Nathalie Pettorelli et al. 2009; Thapa & 
Kelly 2016). Tiger habitat use tends to 
increase with increase in vegetation 
productivity (NDVI). 

Derived from Landsat 6 Thematic Mapper imagery 
(28.5 m X 28.5 m resolution) of the study area 
during the ‘winter season’ in three primary surveys 
(November- February, 2013-2018-2022). Download 
from:  (downloaded from 
https://land.copernicus.eu/en/products/vegetation). 

+ + - + 

Distance to 
waterholes 
(DWAT) 

Water availability becomes a limiting 
factor in the Bardia-Banke Complex 
during the dry months (Thapa et al. 
2023). Proximity to waterholes 
enhances habitat suitability for both 
tiger populations and their prey base 
(Kafley et al. 2016; Thapa et al. 2016). 

Generated a surface by calculating the Euclidean 
distance from waterhole spatial data extracted from 
Bardia and Banke National Park Management Plan. 

- - + - 

Distance to 
settlements 
(DSET) 

Tigers prefer undisturbed forests that 
offer optimal conditions for survival. 
Greater distance from human 
settlements further supports the 
persistence of both tiger populations 
and their prey base (Sunarto et al. 
2012; Kafley et al. 2016). 

Generated a surface by calculating the Euclidean 
distance from settlement data extracted from Nepal 
Survey Department 1996 digital topographic data 
and world settlement data. 

+ + - + 
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(p). We considered the influence of covariates as important and 
supported if their β estimates and the 95% confidence limits did not 
include zero (Dupont 2002). We used estimates from model 
averaged estimates to map the site level tiger habitat use, 
colonization, and extinctions probabilities over three primary 
survey periods in the Bardia-Banke Complex. We also reported the 
rate of changes in tiger habitat use (Lambda, λ) between primary 
sessions from the top habitat use model.   

3 | Results 

3.1 | Summary of trap efforts and tiger detections 

The survey team spent 28,687 camera trap days, with effort varying 
across three primary survey seasons in 2013 (5,340 trap days), 2018 
(9,982 trap days), and 2022 (13,365 trap days), and recorded 
281unique tiger photo detections at 588 grids of the total 1,652 
grids surveyed in the Bardia-Banke Complex (Supportive 
Information S2). For prey detection, the survey team recorded prey 
photo detections at 1,373 grids of the total 1,652 grids surveyed in 
the Complex. 

3.2 | Modelling detection and dynamic occupancy 
probability 

The global models for occupancy (habitat use), colonization, and 
extinction, incorporating landscape and field level covariates, 
revealed a strong influence of survey season on detection 
probabilities across grid cells (AIC weight = 1) (Table 2). Therefore, 
we used seasonal variation in detectability in subsequent analyses 
for modelling probability of tiger habitat use, colonization, and 
extinction. 

After modeling detection probability, we applied the same global 
model for tiger habitat use and seasonal global model for local 
colonization and extinction using seasonal covariates. Among eight 
candidate models, the additive model incorporating PREY, DWAT, 
and seasonal NDVI emerged as the top model (AIC weight = 1.0, 
Table 3), influencing the tiger probability of local colonization along 
grid cells. Based on β values, the effect of PREY seems to have 
significant positive effect suggest higher colonization with increase 
in prey index (CI’s do not overlap zero), while DWAT has a possible 
negative but not significant effect (CI’s overlapped zero) was found 

Table 3. Summary of model selection statistics for the top 8 models depicting probability of local colonization of tigers in the Bardia-Banke Complex, 
Nepal.  

 
Local Colonization models 

 
AIC 

 
ΔAIC 

 
AICwt 

Model 
likelihood 

 
K 

ψ (GM), γ (seasonal DWAT+NDVI+PREY), ε (seasonal GM),p(seasonal) 8032.18 0 1 1 21 
ψ (GM), γ (.), ε (seasonal GM),p(seasonal) 8053.14 20.96 0 0 16 
ψ (GM), γ (seasonal NDVI+DWAT), ε (seasonal GM),p(seasonal) 8061.61 29.43 0 0 19 
ψ (GM), γ (seasonal PREY+DWAT), ε (seasonal GM),p(seasonal) 8071.5 39.32 0 0 19 
ψ (GM), γ (seasonal DWAT), ε (seasonal GM),p(seasonal) 8104.72 72.54 0 0 17 
ψ (GM), γ (seasonal NDVI+PREY), ε (seasonal GM),p(seasonal) 8116.87 84.69 0 0 19 
ψ (GM), γ (seasonal NDVI), ε (seasonal GM),p(seasonal) 8133.84 101.66 0 0 17 
ψ (GM), γ (seasonal PREY), ε (seasonal GM),p(seasonal) 8168.62 136.44 0 0 17 

DWAT: distance to the nearest waterholes; DSET: distance to the nearest settlement; ELE: Elevation; NDVI: normalized difference vegetation index; 
PREY: prey index. K represents the number of parameters in the model. AIC is Akaike information criterion; ΔAIC represents the difference in AIC value 
relative to the top model (Burnham & Anderson 2002); AICwt is AIC weight for each model; ψ is probability of site occupancy/ habitat use; p is the 
probability of detection; γ is the probability of colonization; ε is the probability of extinction. GM is Global Model. 

 

Table 4. Summary of model selection statistics for the top 7 models depicting probability of local extinction of tigers in the Bardia-Banke Complex, 
Nepal.  

 
Local extinction models 

 
AIC 

 
ΔAIC 

 
AICwt 

Model 
likelihood 

 
K 

ψ (GM), γ (seasonal DWAT+NDVI+PREY), ε (seasonal NDVI+DWAT),p(seasonal) 8029.98 0 0.5244 1 19 
ψ (GM), γ (seasonal DWAT+NDVI+PREY), ε (seasonal NDVI),p(seasonal) 8031.65 1.67 0.2275 0.4339 17 
ψ (GM), γ (seasonal DWAT+NDVI+PREY), ε (seasonal  DWAT+NDVI),p(seasonal) 8032.18 2.2 0.1746 0.3329 21 
ψ (GM), γ (seasonal DWAT+NDVI+PREY), ε (seasonal NDVI+PREY),p(seasonal) 8034.16 4.18 0.0649 0.1237 19 
ψ (GM), γ (seasonal DWAT+NDVI+PREY), ε (seasonal PREY+DWAT),p(seasonal) 8038.56 8.58 0.0072 0.0137 19 
ψ (GM), γ (seasonal DWAT+NDVI+PREY), ε (seasonal DWAT),p(seasonal) 8041.84 11.86 0.0014 0.0027 17 
ψ (GM), γ (seasonal DWAT+NDVI+PREY), ε (seasonal PREY),p(seasonal) 8048.98 19 0 0.0001 17 

DWAT: distance to the nearest waterholes; DSET: distance to the nearest settlement; ELE: Elevation; NDVI: normalized difference vegetation index; 
PREY: prey index. K represents the number of parameters in the model. AIC is Akaike information criterion; ΔAIC represents the difference in AIC value 
relative to the top model (Burnham & Anderson 2002); AICwt is AIC weight for each model; ψ is probability of site occupancy/ habitat use; p is the 
probability of detection; γ is the probability of colonization; ε is the probability of extinction. GM is Global Model. 

Table 2. Summary of model selection statistics for the 7 candidate models depicting detection probability of tigers in the Bardia-Banke Complex, Nepal. 
K represents the number of parameters in the model. AIC is Akaike information criterion; ΔAIC represents the difference in AIC value relative to the top 
model (Burnham & Anderson 2002); AICwt is AIC weight for each model; ψ is probability of site occupancy/ habitat use; p is the probability of 
detection; γ is the probability of colonization; ε is the probability of extinction. GM is the Global Model. 

Detection model AIC AIC AICwt Model likelihood K 
ψ (GM), γ (seasonal GM), ε (seasonal GM),p(seasonal) 8032.18 0 1 1 21 
ψ (.),γ (.),eps(.),p(.) 8248.78 216.6 0 0 4 
ψ (GM), γ (seasonal GM), ε (seasonal GM), p(seasonal DWAT+NDVI+PREY) 10930.97 2898.79 0 0 27 
ψ (GM), γ (seasonal GM), ε (seasonal GM), p(seasonal DWAT+NDVI) 10931.49 2899.31 0 0 24 
ψ (GM), γ (seasonal GM), ε (seasonal GM), p(seasonal DWAT) 10960.48 2928.3 0 0 21 
ψ (GM), γ (seasonal GM), ε (seasonal GM), p(seasonal PREY) 11628.23 3596.05 0 0 21 
ψ (GM), γ (seasonal GM), ε (seasonal GM), p(seasonal NDVI) 11657.2 3625.02 0 0 21 

DWAT: distance to the nearest waterholes; DSET: distance to the nearest settlement; ELE: Elevation; NDVI: normalized difference vegetation index; 
PREY: prey index. 
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on colonization suggesting more colonization near water sources, 
and while the seasonal NDVI seems to have negative on colonization, 
opposite to apriori with inconclusive effect (Table 6).  

We therefore fixed the top colonization model with additive effects 
of PREY, DWAT, and NDVI and developed a set of models exploring 

different covariate combinations influencing local extinction 
probability and occupancy (tiger habitat use). 

Among the seven candidate models, the additive model 
incorporating seasonal NDVI and DWAT ranked highest (AIC weight 
= 0.52, Table 4), influencing the probability of local tiger extinctions 

Table 5. Summary of model selection statistics for the top 18 models depicting probability of habitat use by tigers in the Bardia-Banke Complex, Nepal.  

 
Occupancy models 

 
AIC 

 
ΔAIC 

 
AICwt 

Model 
likelihood 

 
K 

ψ (DWAT+DSET+NDVI+ELE+PREY), γ (seasonal DWAT+NDVI+PREY), ε (seasonal 
NDVI+DWAT),p(seasonal) 

8029.98 0 0.5059 1 19 

ψ (DWAT+NDVI), γ (seasonal DWAT+NDVI+PREY), ε (seasonal 
NDVI+DWAT),p(seasonal) 

8030.73 0.75 0.3477 0.6873 16 

ψ (DWAT+NDVI+PREY), γ (seasonal DWAT+NDVI+PREY), ε (seasonal 
NDVI+DWAT),p(seasonal) 

8032.46 2.48 0.1464 0.2894 17 

ψ (NDVI), γ (seasonal DWAT+NDVI+PREY), ε (seasonal NDVI+DWAT),p(seasonal) 8059.32 29.34 0 0 15 
ψ (NDVI+PREY), γ (seasonal DWAT+NDVI+PREY), ε (seasonal 
NDVI+DWAT),p(seasonal) 

8060.67 30.69 0 0 16 

ψ (NDVI+DSET+PREY+ELE), γ (seasonal DWAT+NDVI+PREY), ε (seasonal 
NDVI+DWAT),p(seasonal) 

8062.32 32.34 0 0 18 

ψ (DWAT), γ (seasonal DWAT+NDVI+PREY),eps(seasonal 
NDVI+DWAT),p(seasonal) 

8069.55 39.57 0 0 15 

ψ (DWAT+ELE), γ (seasonal DWAT+NDVI+PREY), ε (seasonal 
NDVI+DWAT),p(seasonal) 

8070.48 40.5 0 0 16 

ψ (DWAT+PREY), γ (seasonal DWAT+NDVI+PREY), ε (seasonal 
NDVI+DWAT),p(seasonal) 

8071.22 41.24 0 0 16 

ψ (DWAT+DSET), γ (seasonal DWAT+NDVI+PREY), ε (seasonal 
NDVI+DWAT),p(seasonal) 

8071.33 41.35 0 0 16 

ψ (DWAT+DSET+ELE), γ (seasonal DWAT+NDVI+PREY), ε (seasonal 
NDVI+DWAT),p(seasonal) 

8072.48 42.5 0 0 17 

ψ (DWAT+PREY+DSET+ELE), γ (seasonal DWAT+NDVI+PREY), ε (seasonal 
NDVI+DWAT),p(seasonal) 

8074.27 44.29 0 0 18 

ψ (DSET+ELE), γ (seasonal DWAT+NDVI+PREY), ε (seasonal 
NDVI+DWAT),p(seasonal) 

8133.08 103.1 0 0 16 

ψ (DSET+PREY+ELE), γ (seasonal DWAT+NDVI+PREY), ε (seasonal 
NDVI+DWAT),p(seasonal) 

8133.98 104 0 0 17 

ψ (ELE), γ (seasonal DWAT+NDVI+PREY), ε (seasonal NDVI+DWAT),p(seasonal) 8141.6 111.62 0 0 15 
ψ (DSET), γ (seasonal DWAT+NDVI+PREY), ε (seasonal NDVI+DWAT),p(seasonal) 8150.33 120.35 0 0 15 
ψ (PREY), γ (seasonal DWAT+NDVI+PREY), ε (seasonal NDVI+DWAT),p(seasonal) 8173.13 143.15 0 0 15 
ψ (PREY), γ (seasonal PREY + DWAT), ε (seasonal NDVI + DWAT),p(seasonal) 8269.59 69.76 0 0 12 

DWAT: distance to the nearest waterholes; DSET: distance to the nearest settlement; ELE: Elevation; NDVI: normalized difference vegetation index; 
PREY: prey index. K represents the number of parameters in the model. AIC is Akaike information criterion; ΔAIC represents the difference in AIC value 
relative to the top model (Burnham & Anderson 2002); AICwt is AIC weight for each model; ψ is probability of site occupancy/ habitat use; p is the 
probability of detection; γ is the probability of colonization; ε is the probability of extinction. 

 

Table 6. Summary of the β coefficient estimates derived using the logit link function from the top-ranked model, as well as from univariate models either 
within 2 ΔAIC units of the top model or with model weights exceeding 95%. These estimates are based on field- and landscape-level covariates 
hypothesized to affect tiger habitat use probability (ΨGRID), colonization (γ), extinction (ε), and detection (p) at 2 × 2 km2 grid level.  

Scale Model βDWAT  (SE) βDSET  (SE) βELE  (SE) βNDVI  (SE) βPREY (SE) 

ΨGRID Best model -0.87 (0.16) 0.55 (0.19) -0.31(0.21) -2.09 (0.38) -0.07 (0.11) 

Univariate -1.29 (0.17) -0.75 (0.16) -1.16(0.21) -2.45 (0.57) -0.04 (0.08) 

γ2013-2018/ 

γ2018-2022 

Best model -1.63 (1.01)/  

-1.60 (0.24) 

  -5.34(0.39)/ 

-0.08 (0.14) 

0.20 (0.50)/ 

1.74 (0.43) 

Univariate -0.69 (0.16)/ 

-1.18 (0.17) 

  -2.57(3.09)/ 

-0.06 (0.10) 

-0.05(0.11)/ 

0.66 (0.21) 

ε2013-2018/ 

ε 2018-2022 

Best model -0.49 (0.19)/ 

0.01 (0.20) 

  -0.36(0.11)/ 

0.52 (0.22) 

 

Univariate -0.71 (0.21)/ 

0.18 (0.18) 

  -0.43(0.10)/ 

0.55 (0.21) 

0.33 (0.12)/ 

-0.54 (0.25) 

Ψ indicates the probability of site occupancy or habitat use at the grid scale (ΨGRID); β refers to the coefficient reflecting the magnitude and direction of a 
covariate’s influence in the model; βO denotes the intercept. DWAT represents the distance to waterholes, DSET is the distance to human settlements, ELE 
indicates elevation, NDVI stands for the normalized difference vegetation index, and PREY refers to the prey availability index. SE denotes the 
unconditional standard errors; NC indicates models that did not converge. Models shown in bold represent the best-supported models, underlined 
models align with a priori hypotheses, and italicized models highlight covariates with significant influence on tiger habitat use (i.e., 95% confidence 
intervals exclude zero). 
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along grid cells. Based on β values, the seasonal NDVI seems to have 
a positive effect on local extinction from 2018-2022 and a negative 
effects from 2013-2018, contrary to a priori expectations. However, 
the results remain inconclusive, as the confidence intervals overlap 
zero. In contrast, DWAT shows a possible negative effect on local 
extinction from 2013–2018 and a positive effect from 2018–2022. 
However, neither effect is statistically significant, as the confidence 
intervals overlap zero. These patterns may suggest abandonment of 
grid cells further from water sources between the two survey 
periods (Table 6).  

We fixed the top local extinction model with additive effects of NDVI 
and DWAT, and subsequently built models using different 
combinations of covariates to assess their influence on the 
probability of tiger habitat use. 

3.3 | Modelling occupancy for tiger habitat use and 
influencing covariates  

The large number of competing models using landscape and field 
level covariates highlights uncertainties in modeling probability of 
tiger habitat use in the study areas. However, certain variables 
consistently appeared in all top models (Table 5). Among the 18 
candidate models, the top model (AIC weight = 0.51) included a 

global model which included the additive effects of distance to water 
(DWAT), distance to settlement (DSET), habitat productivity (NDVI), 
wild prey index (PREY), and elevation (ELE). DWAT had a significant 
negative effect on probability of tiger habitat use, consistent with the 
priori hypothesis, as indicated by confidence intervals not 
overlapping zero. DSET was associated with lower probability of 
tiger habitat use near villages, aligning with expectations. Contrary 
to the priori hypothesis, NDVI significantly reduced the probability 
of tiger habitat use, with confidence intervals excluding zero. 
Unexpectedly, PREY had a negative effect on probability of tiger 
habitat use, but its confidence intervals overlapped at zero, 
suggesting an inconclusive effect. Similarly, ELE showed a negative 
but non-significant influence, with confidence intervals overlapping 
zero (Table 5).  

3.4 | Estimates of tiger habitat use dynamics in the 
Badia-Banke Complex 

At the grid level (2 X 2 km2), survey season influenced the 
probability of tiger detections, (p̂ (SE (p̂)). Detection probability was 
significantly higher in 2018 at 0.31 (0.01) compared to 0.09 (0.01) 
in 2013 and 0.12 (0.01) in 2022 when using the global model for 
occupancy (tiger habitat use). The multi-season occupancy models 
estimated the probability of colonization (gamma, γ̂ (𝑆𝐸 (γ̂)) and 

 

 
Figure 2. Maps of estimated mean site level habitat use probabilities (ѰGRID) for tigers in the Bardia – Banke Complex during the first primary session in 
2013 (top-left), the second primary session in 2018 (top-right), and the third primary session in 2022 (bottom). 
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showed positive increase between subsequent surveys, with a 
model-averaged estimate of 0.39 (SE 0.09, CV=23%) between 2013–
2018 and 0.48 (SE 0.04, CV=8%) between 2018–2022. The multi-
season occupancy models estimated the probability of extinction 
(epsilon,ε̂ (𝑆𝐸 (ε̂)) and showed positive increase with similar 
estimates between subsequent surveys, with a model-averaged 
estimate of 0.50 (SE 0.01) between 2013–2018 and 0.50 (SE 0.01) 
between 2018–2022. Model-averaged estimates of habitat use 
(Ѱ̂ (𝑆𝐸 (Ѱ̂)) (initial Ѱ ), based on a combination of landscape and 
field level covariates, were 0.56 (SE 0.011) in 2013, 0.32 (SE 0.004) 
in 2018, and 0.49 (SE 0.002) in 2022. 

4 | Discussion 

This study is the first to use multiyear, systematic camera trap 
survey data to analyze tiger habitat use over time and the 
environmental factors shaping site-use dynamics in Nepal. Using a 
robust multi-season occupancy framework (MacKenzie et al. 2006), 
we examined habitat use across a gradient from floodplain to 
seasonally dry deciduous forests in the Bardia-Banke Complex. Our 
periodic monitoring (every four to five years) protocol and relative 
ease in collecting detection and non-detection data through camera 
trap surveys provide a powerful approach in estimating and 
predicting intensity of tiger habitat use (Jhala et al. 2025) across the 
source sites (Figure 2). Habitat use probabilities varied across 
primary sessions, peaking at 0.56 in 2013, dipping to a low of 0.32 in 
2018, and rising again to 0.49 in 2022, indicating substantial habitat 
use by tigers. One possible reason for the observed variation in tiger 
habitat use is the increase in sampling effort due to the expansion of 

the area surveyed. This artefact, driven by greater sampling in 
peripheral zones of protected areas, typically less used by tigers, 
may have influenced the results. In contrast, in 2013 survey focused 
primarily in core protected areas, which are more intensively used 
by tigers. 

A potential explanation for drop in tiger habitat use probability in 
2018 could be habitat disturbances such as prolonged forest fire or 
flood-induced stagnant water in the habitat between 2013 and 2018 
(DNPWC 2018). 

Tiger habitat uses over time indicate a positive trend, with the 
highest gains observed between 2018 and 2022. The driving forces 
behind these changes are primarily linked to the distance to water 
sources and the presence of waterholes. The spatial distribution of 
these water sources plays a key role in influencing tiger habitat use. 
Despite the parks having few perennial water sources aside from the 
major rivers, the construction of waterholes through habitat 
management programs may significantly contribute to creating 
suitable habitats for the species. 

This is biologically plausible, given that the Banke-Bardia Complex 
is primarily located in the Churia and Bhabhar regions, where water 
sources are critical factors influencing tiger presence. The 
declaration of Banke National Park as a protected area in 2010 was 
likely a key driver of habitat development and protection for tigers. 
Two perennial rivers, the Karnali and the Babai, pass through the 
Bardia National Park creating floodplain habitats that are highly 
productive for prey species. Instead, Banke National Park is 
dominated by the Sal-forest in Churia hills, with porous alluvial 
substrates running from east to west in the northern part of the park.  

  
Figure 3. Maps of colonization probabilities for tiger in the Bardia–Banke Complex for the periods (γ 2013-2018) (left) and in (γ 2018-2022) (right). 

 

  
Figure 4. Maps of extinction probabilities for tigers in the Bardia – Banke Complex for the period (ε 2013-2018) (left) and in (ε 2018-2022) (right). 
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The streams originating from the Churia Hills permeate the porous 
sediment and flow beneath the land surface, reemerging south of the 
park, thereby restricting water availability in over 80% of the park 
during dry months. Most of the artificial waterholes created to 
provide water for wildlife do not retain water during dry months, 
when water is a key limiting factor for wildlife in Banke National 
Park. Metrics indicate spatial variation in tiger habitat use within 
core areas and temporal variation over time. Habitat factors, such as 
the presence of waterholes and distance from settlements, are major 
contributors to the observed patterns of tiger habitat use in the 
Complex. The extensive spatial coverage of Churia and Bhabhar 
regions, areas are typically characterized by lower productivity, 
influences tiger habitat use within protected areas (PAs) and 
surrounding landscapes. Disturbances such as proximity to human 
settlements and forest fires may have significant negative impacts, 
whereas active habitat management is likely to play a key role in 
enhancing tiger habitat use across the range.  

Our results demonstrate that tigers are unevenly distributed across 
the Bardia-Banke Complex, with sink-like habitats occurring outside 
the core tiger areas of the Complex, which is embedded within 
globally prioritized tiger conservation landscape, Terai Arc 
Landscape. We observed a higher concentration of tiger habitat use 
in Bardia National Park, suggesting it may serve as a source 
population for both existing and potential corridors, namely Kamdi 
and Khata (Figure 2; see habitat use map of 2022). Our results 
reveals site specific and temporal variations in tiger habitat use, 
consistent with findings from other studies (example Kafley et al. 
2016; Thapa & Kelly 2017) and studies on other species (example 
elephants - Thapa et al. 2020; Ram et al. 2024). Identifying site-and 
species-specific hotspot-areas with a higher probability of habitat 
use (Figure 2) can help managers develop targeted conservation 
strategies to enhance tiger habitat use.  

Our top model indicates that landscape-level covariates primarily 
drive tiger habitat use in the Bardia-Banke Complex, supporting 
three of the five priori hypotheses. However, considerable model 
selection uncertainty remains, with the top model (w = 0.50) 
incorporating the additive effects of distance to waterhole (DWAT), 
distance to settlement (DSET), prey index (PREY), habitat 
productivity (NDVI), and elevation (ELE). Tiger habitat use 
fluctuates in a high-low-medium pattern over time reflecting the 
interplay of ecological, environmental variables and disturbance 
factors. Our findings align with previous studies on tiger and leopard 
occupancy at the landscape scale (Barber-Meyer et al. 2013; Thapa 
et al. 2021) as well as fine-scale studies in source sites such as 
Chitwan National Park (Kafley et al. 2016; Thapa & Kelly 2017).  

As expected, tiger habitat use increased near waterholes (DWAT) 
and decreased in areas with higher levels of disturbance (DSET; 
Barber-Meyer et al. 2013; Harihar & Pandav 2012) and elevation 
(ELE; Thapa et al. 2022). However, in the prominent Churia habitat 
of the Complex, tiger habitat use unexpectedly declined with 
increasing NDVI and prey index, although the effect size was small. 
This pattern contradicted our predictions but was consistent with 
previous findings for tigers by Thapa & Kelly (2017) and for 
leopards by Lamichhane et al. (2021) in the Churia range. 

In agroecosystems, tigers exhibited a high probability of using 
agricultural areas during the winter (0.64; SE = 0.08), coinciding 
with increased vegetation cover. During this season, tigers preferred 
densely vegetated areas and avoided regions with dense human 
settlements (Warrier et al. 2020). Vegetation cover also had a strong 
positive effect on mammalian community occupancy, particularly 
among large-bodied or diurnal species (Feng et al. 2021). As habitat 
generalists, tigers have been recorded at high densities in open 
forest habitats. The observed negative relationship with NDVI in 
forest ecosystems may reflect their ecological flexibility. 

Our findings indicate that colonization probabilities increased 
(gamma, γ̂ = 0.39 to 0.48) between survey periods, suggesting 
potential new site use or an expansion of tiger presence (Figure 3). 
This trend may be linked to substantial conservation investments 

within the Terai Arc Landscape (TAL) (Thapa et al. 2020). Key 
management interventions aimed at achieving tiger conservation 
goals included the construction and maintenance of waterholes, 
restoration of wetlands and springs, development of solar-powered 
deep bore ponds to ensure year-round water availability, and 
targeted grassland management through cutting and controlled 
burning. Additionally, the creation of fire line networks to mitigate 
wildfire risks, increased patrolling, and the establishment of new 
guard posts have contributed to improved habitat conditions. These 
interventions, particularly between 2013 and 2022, have enhanced 
the distribution and reliability of water sources, thereby supporting 
greater habitat suitability for tiger colonization (DNPWC 2019). 
Moreover, the integrated development of waterholes, grasslands, 
and fireline networks as cohesive management units is likely to 
further promote tiger persistence and long-term habitat use in key 
source sites. 

However, extinction probabilities also increased between surveys, 
underscoring ongoing habitat dynamics. The consistent extinction 
estimate across the periods 2013–2018 and 2018–2022 (ε̂ = 0.50) 
suggests persistent site turnover, emphasizing the need for targeted 
conservation interventions (Figure 4). We propose two plausible 
drivers for this continued turnover in the Bardia-Banke Complex. 
First, tourism-related disturbances, particularly from jungle safaris 
and guided walks that follow tiger presence, may be disrupting 
habitat use, given the tiger’s status as a flagship attraction. Second, 
the limited application of consistent and adaptive habitat 
management may be allowing successional changes that render 
previously used sites unsuitable for long-term tiger occupancy. 

Understanding habitat use dynamics is crucial for adaptive 
management strategies aimed at stabilizing populations and 
improving long-term habitat suitability for tigers. We developed 
dynamic models (colonization and extinction) using a combination 
of field and landscape level variables influencing these processes. 
The model weight was concentrated on the most influential 
covariates: one for survey specific detectability, three seasonal 
covariates for colonization, two for local extinction, and five for 
habitat use. Supporting our priori hypothesis, detection probability 
varied across survey periods. This variation may be attributed to the 
type of detector (camera trap model) used during the three sampling 
periods (Shah et al. 2025) in the winter season. A combination of 
covariates was found to both positively and negatively influence 
colonization and extinction probabilities specific to survey sessions 
in the Complex, with each model supporting two to three of the three 
a priori hypotheses. Although none of the covariates had a 
consistently conclusive effect on tiger habitat use dynamics, factors 
such as distance to waterholes, prey index (i.e., prey availability) and 
habitat productivity (measured by NDVI during the winter season) 
were found to influence both new site use and site abandonment by 
tigers in the Bardia-Banke Complex. Tiger colonization between the 
successive surveys, supporting two of the three a priori hypotheses, 
may be attributed to the spatial distribution of waterholes and prey 
availability in the source sites (Shah et al. 2024; Shah et al. 2025). 
Habitat productivity, as a measure by NDVI, showed contradicting 
results; its effect on both local colonization and extinction was 
therefore inconclusive and inconsistent across survey sessions —
contrary to our a priori prediction.  

The spatial location of waterholes had an effect; however, low water 
availability within them, along with the omission of external factors 
related to habitat management (such as forest fire) or other 
disturbance drivers may need to be assessed in future surveys. Our 
estimates show an increase in the proportion of habitat used by 
tigers, starting from an initial 1,611 km² with fluctuation in habitat 
use between the periods 2013–2018 and 2018–2022. These trends 
indicate a negative rate of change between 2013-2018 (average 
lambda λ2013-2018 = 0.60, representing 40% decline) and a positive 
rate of change between 2018-2022 (average lambda λ2018-2022 = 2.28, 
representing a 128% increase) in tiger habitat use probabilities. 
This suggests that Banke National Park, one of the newest protected 
areas in the country, has recently played an effective role in 
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supporting tiger recovery within the Bardia-Banke Complex 
(DNPWC & DFSC 2022).  

5 | Conclusions  

A positive trajectory in tiger habitat use, characterized by distinct 
spatial and temporal variation, appears to be primarily driven by the 
distribution of water sources. Tigers are progressively expanding 
into new potential habitats, with increasing local colonization 
probabilities accompanied by consistent site turnover, as indicated 
by local extinction probabilities. These dynamics highlight the 
importance of targeted, site-specific conservation strategies aimed 
at enhancing habitat suitability and promoting landscape 
connectivity. 

Understanding habitat use patterns within a species’ home range is 
crucial for devising effective conservation strategies at a source site. 
In water-limited habitats, especially during the dry season, the 
spatial distribution of waterholes significantly influences tiger 
habitat use, along with prey availability, and extent of forest and 
grass cover. An integrated habitat management approach such as 
maintaining waterholes and ensuring prey availability can enhance 
tiger habitat use and promote colonization, thereby supporting their 
long-term persistence (occupied grid cells over the years) in the 
Bardia-Banke Complex. The study’s combination of estimated tiger 
habitat use and grid-based approaches offers a valuable framework 
for implementing targeted conservation interventions. Bardia and 
Banke National Park have played a crucial role in the recovery of the 
tiger population (Shah et al. 2024). The systematic survey methods 
employed in the study can be replicated to monitor long-term 
persistence of tigers across the Complex. 
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Supportive Information (S1‒S2): 

S1. Spearman correlation coefficients between the predictor variables. Those with very high correlations (|rs| ≥ 0.70) were not used together in the same model. 
Number of grid cells surveyed = 1652. 

Covariates DSET SLOPE ELE_2
013 

DWAT
2022 

DWAT
2018 

DWAT
2013 

NDVI_
2022 

NDVI_
2018 

NDVI_
2013 

PREY_
2022 

PREY_
2018 

PREY_
2013 

DSET 1.00            
SLOPE 0.16 1.00           
ELE_2013 0.06 0.67 1.00          
DWAT_2022 0.04 -0.11 0.04 1.00         
DWAT_2018 0.10 -0.01 0.12 0.72 1.00        
DWAT_2013 0.30 0.05 -0.05 -0.04 0.06 1.00       
NDVI_2022 0.35 0.40 0.40 -0.06 0.02 0.12 1.00      
NDVI_2018 0.36 0.45 0.44 -0.07 0.04 0.15 0.97 1.00     
NDVI_2013 0.33 0.48 0.48 -0.06 0.03 0.11 0.98 0.97 1.00    
PREY_2022 0.00 -0.17 -0.26 -0.18 -0.15 0.06 -0.10 -0.10 -0.12 1.00   
PREY_2018 -0.16 -0.19 -0.19 -0.05 -0.09 -0.16 -0.42 -0.40 -0.45 0.15 1.00  
PREY_2013 0.16 -0.02 -0.16 -0.35 -0.17 0.44 0.05 0.07 0.04 0.08 0.01 1.00 

DSET: distance to nearest settlement; DWAT: distance to nearest water sources; ELE: Elevation; NDVI: normalized difference vegetation index; SLOPE: slope; 
PREY: prey index. 

 

S2. Summary of survey effort and detection of tigers in the Bardia-Banke Complex, western TAL, Nepal. 

Descriptions 2013 2018 2022 

Number of 2 X 2 km2 grid cells surveyed 356 577 719 

Survey trapping efforts  5,340 9,982 13,365 

Grid cells with tigers detections 113 187 288 

Naïve Occupancy * 0.32 0.32 0.40 

*number of sites where the species was detected divided by total number of sites surveyed. 

 

 

 


