Modelling habitat suitability of the Himalayan monal (Lophophorus impejanus) and its connectivity in the Himalayas

  • Suraj Baral Amrit Science Campus, Tribhuvan University, Kathmandu, Nepal
Keywords: Ecological niche modelling, Maxent, National bird, Patch importance, Link importance

Abstract

The Himalayan monal Lophophorus impejanus is a montane bird exhibiting a seasonal migration to avoid harsh winter. However, the knowledge of the suitable habitat and level of connectivity across the range for the species is not available. To close this knowledge gap relevant for the species' conservation, species distribution modelling with presence-only data and relevant environmental variables was used to determine the range-wide distribution of the species. The distribution of the species is mainly constrained by habitat and climatic variables. The connectivity of the species was modeled using the distribution model output. The study presented a currently contiguous area of suitable habitat available for the species that are well connected with evidence of metapopulation in the range edges. The study also found that the current network of protected areas is not sufficient to ensure the connectivity of the species. Conservation of the currently suitable habitat is necessary to ensure the species is conserved.

References

Allouche, O., Tsoar, A. and Kadmon, R. 2006. Assessing the accuracy of species distribution models: Prevalence, kappa, and the true skill statistic (TSS). Journal of Applied Ecology 43:1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

Bach A. J. and Price, L. W. 2013. Mountain Climate. In: Price, M. F., Byers, A. C., Friend, D. A., Kohler, T. and Price, L. W (Eds.) Mountain Geography. Berkeley: University of California Press, p 4184.

Batáry, P., Dicks, L. V., Kleijn, D. and Sutherland, W. J. 2015. The role of agri-environment schemes in conservation and environmental management. Conservation Biology 29:10061016. https://doi.org/10.1111/cobi.12536

BirdLife International. 2016. Lophophorus impejanus. The IUCN Red List of Threatened Species 2016: e.T22679182-A92806166. https://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22679182A92806166.en. Retrieved on 23 June 2021

Boria, R. A., Olson, L. E., Goodman, S. M. and Anderson, R. P. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275:73–77.

https://doi.org/10.1016/j.ecolmodel.2013.12.012

Bradsworth, N., White, J. G., Isaac, B. and Cooke, R. 2017. Species distribution models derived from citizen science data predict the fine scale movements of owls in an urbanizing landscape. Biological Conservation 213:27–35. https://doi.org/10.1016/j.biocon.2017.06.039

Chhetri, B., Badola, H. K. and Barat, S. 2021. Modelling climate change impacts on distribution of Himalayan pheasants. Ecological Indicators 123:107368.

https://doi.org/10.1016/j.ecolind.2021.107368

Das, P., Behera, M. D. and Murthy, M. S. R. 2017. Forest fragmentation and human population varies logarithmically along elevation gradient in Hindu Kush Himalaya-utility of geospatial tools and free data set. Journal of Mountain Science 14:2432-2447.

Del Hoyo, J., Elliot, A. and Sargatal, J., 1994. Handbook of the birds of the world Vol II: New world vultures to guinea fowl. Lynx Edicions, Barcelona, p 638.

DNPWC and DFSC 2018. Pheasant Conservation Action Plan for Nepal (2019-2023). Department of National Parks and Wildlife Conservation and Department of Forests and Soil Conservation. Kathmandu, Nepal.

Dunn, J. C., Buchanan, G. M., Cuthbert, R. J., Whittingham, M. J. and Mcgowan, P.J. 2015. Mapping the potential distribution of the Critically Endangered Himalayan Quail Ophrysia superciliosa using proxy species and species distribution modelling. Bird Conservation International 25:466–478.

https://doi.org/10.1017/S095927091400046X

Dunn, J. C., Buchanan, G. M., Stein, R. W., Whittinngham, M. J. and McGowan, P. J. K. 2016. Optimising different types of biodiversity coverage of protected areas with a case study using Himalayan Galliformes. Biological Conservation 196:22–30. https://doi.org/10.1016/j.biocon.2016.01.015

Elith, J., Graham, C. H., Anderson, R. P., Dudık, M., Ferrier, S., Guisan, A. et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

Fielding, A. H. and Bell, J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38–49. https://doi.org/10.1017/S0376892997000088

Fuller R. A. and Garson P. J. (Eds.). 2000. Pheasants: status survey and conservation action plan 2000-2004. IUCN Publ. Serv. Unit, Cambridge, p 66.

GBIF.org. 2021. GBIF Occurrence Download https://doi.org-/10.15468/dl.8npz2w. Retrieved on 24 June 2021

Grimmett, R., Inskipp, C. and Inskipp, T. 2016. Birds of the Indian Subcontinent: India, Pakistan, Sri Lanka, Nepal, Bhutan, Bangladesh and the Maldives. Bloomsbury Publishing, p 480.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965–1978.

https://doi.org/10.1002/joc.1276

Jokimäki, J., Suhonen, J. and Kaisanlahti-Jokimäki, M.-L. 2018. Urban core areas are important for species conservation: A European-level analysis of breeding bird species, Landscape and Urban Planning 178:73-81. https://doi.org/10.1016/j.landurbplan.2018.05.020.

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P. and Kessler, M., 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4:170122. https://doi.org/10.1038/sdata.2017.122

Kass, J. M., Muscarella, R., Galante, P. J., Bohl, C. L., Pinilla‐Buitrago, G. E., Boria, R. A. et al. 2021. ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution 12:1602–1608.

https://doi.org/10.1111/2041-210X.13628

Liu, C., Newell, G. and White, M. 2016. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337–348. https://doi.org/10.1002/ece3.1878

Macdonald, S. L., Llewelyn, J., Moritz, C. and Phillips, B. L. 2017. Peripheral isolates as sources of adaptive diversity under climate change. Frontiers in Ecology and Evolution 5:88. https://doi.org/10.3389/fevo.2017.00088

Maskell, L. C., Botham, M., Henrys, P., Jarvis, S., Maxwell, D., Robinson, D.A. et al. 2019. Exploring relationships between land use intensity, habitat heterogeneity and biodiversity to identify and monitor areas of High Nature Value farming. Biological Conservation 231:30–38. https://doi.org/10.1016/j.biocon.2018.12.033

McCallum, H. and Dobson, A., 2002. Disease, habitat fragmentation and conservation. Proceedings of the Royal Society of London. Series B: Biological Sciences 269:2041–2049. https://doi.org/10.1098/rspb.2002.2079

Minor, E. S. and Urban, D. L. 2008. A graph‐theory framework for evaluating landscape connectivity and conservation planning. Conservation Biology 22:297–307.

https://doi.org/10.1111/j.1523-1739.2007.00871.x

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. and Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403:853–858.

Naimi, B. and Araújo, M. B. 2016. SDM: A reproducible and extensible R platform for species distribution modelling. Ecography 39:368–375. https://doi.org/10.1111/ecog.01881

Norbu, N., Wikelski, M. C., Wilcove, D. S., Partecke, J., Sherub, U., Tenzin, U. et al. 2013. Partial Altitudinal Migration of a Himalayan Forest Pheasant. PLoS ONE 8:e60979. https://doi.org/10.1371/journal.pone.0060979

Pascual-Hortal, L. and Saura, S., 2006. Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landscape Ecology 21:959-967.

Phillips, S. J., Anderson, R. P. and Schapire, R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rai, R., Paudel, B., Changjun, G. and Khanal, N. R., 2020. Change in the Distribution of National Bird (Himalayan Monal) Habitat in Gandaki River Basin, Central Himalayas. Journal of Resources and Ecology 11:223–231. https://doi.org/10.5814/j.issn.1674-764x.2020.02.010

Root, T. 1988. Energy constraints on avian distributions and abundances. Ecology 69:330–339.

https://doi.org/10.2307/1940431

Ruuskanen, S., Hsu, B. Y. and Nord, A. 2021. Endocrinology of thermoregulation in birds in a changing climate. Molecular and Cellular Endocrinology 519:111088. https://doi.org/10.1016/j.mce.2020.111088

Salick, J., Fang, Z. and Hart, R. 2019. Rapid changes in Eastern Himalayan alpine flora with climate change. American Journal of Botany 106:520–530.

https://doi.org/10.1002/ajb2.1263

Soldatini, C., Albores-Barajas, Y. V. and Pellizzi, B., 2010. Habitat preferences of high-altitude Galliformes in Sagarmatha National Park, Nepal. Italian Journal of Zoology 77:347–353.

https://doi.org/10.1080/11250000903337909

Srinivasan, U., Elsen, P. R., Tingley, M. W.and Wilcove, D. S. 2018. Temperature and competition interact to structure Himalayan bird communities. Proceedings of Royal Society B 285:20172593.

http://dx.doi.org/10.1098/rspb.2017.2593

Thuiller, W. and Münkemüller, T. 2010. Habitat suitability modeling. In: Moller, A. P., Fielder, W. and Berthold, P. Effects of climate change on birds, pp.77–85.

Thuiller, W., Lafourcade, B., Engler, R. and Araújo, M. B. 2009. BIOMOD- a platform for ensemble forecasting of species distribution. Ecography 32:369–373.

https://doi.org/10.1111/j.1600- 0587.2008.05742.x

Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H. and Guisan, A. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions 14:763–773.

https://doi.org/10.1111/j.1472-4642.2008.00482.x

Xu, J., Badola, R., Chettri, N., Chaudhary, R. P., Zomer, R., Pokhrel, B. and Pradhan, R. 2019. Sustaining biodiversity and ecosystem services in the Hindukush Himalaya. In: Wester, P., Mishra, A., Mukherji, A. and Shrestha, A. B (Eds.). The Hindu Kush Himalaya Assessment- Mountains, climate change, sustainability and people, pp 127–165.

Published
2022-07-16
How to Cite
Baral, S. (2022). Modelling habitat suitability of the Himalayan monal (Lophophorus impejanus) and its connectivity in the Himalayas. Nepalese Journal of Zoology , 6(1), 1-9. https://doi.org/10.3126/njz.v6i1.46748
Section
Research Articles