Tribhuvan University Institute of Science and Technology M Sc Zoology Semester System Micro-syllabus 2071

General Objectives

- To make the M. Sc. Programme in Zoology more practical and relevant to the professional needs as required by the country.
- To provide the students with advanced knowledge in the area of specialization and upgrading the quality so that M.Sc. students in Zoology could compete academically with other universities of the international level.

Semester II

Course Title: Evolution, Embryology and Ethology Course No: Zoo 551 Nature of the Course: Theory

Objectives

- To help students to know the principles of evolutionary biology.
- To impart knowledge on development systems of chordates.
- To provide knowledge on distribution and behaviour types of animal in nature.

Teaching materials required to fulfill the objectives are boards, charts, flex prints, overhead projector (OHP), power-point projector and other basic teaching materials prepared by teachers and as provided by the campuses.

Credits: 3 Lecture hrs: 45 Full marks: 75 Pass marks: 37.5

Unit	Sub-unit	Description of content of the sub-unit (depth)	Lec.hrs	Text/Ref. for the topics (for detail see the list of
				text & references)
Evolution (12 hrs)	Introduction, evidences, theories & mechanism	Definition, Concept of evolution, Historical development (Period of speculation, Period of observation and inference, Period of experimentation)	1	Futuyma; Ridley.
		Evidences from Classification, Comparative Anatomy/ Morphology, Embryology, Paleontology, Zoogeography, Biochemistry & Physiology and Genetics	2	
		Lamarckian theory, Theory of natural selection, Modern synthetic theory, Germplasm Theory, Mutation theory	2	
	Evolutionary processes	Variation: Definition, types, sources and significance.	1	
	in population and species: variation, natural selection and adaptation	Natural selection and Adaptation: Definition, nature, types, natural selection in action, definition of adaptation, types, adaptation in action	2	
	Isolation	Introduction, History, Isolating mechanism – pre mating (geographical, climatic, seasonal, habitat, isolation due to distance,ethological, Mechanical and Physiological Isolation) and post mating (Gametic mortality, Zygotic mortality, Hybrid Inviability, Hybrid Sterility), Role of isolation in evolution.	1	
	Speciation	Introduction , Mode of speciation (Allopatric, Sympatric and Parapatric), Factors (mutation, recombination, migration and gene flow, natural selection), Theories of speciation (Classical theory of gradualism, Catastrophic mode of Speciation , Founder – flush Speciation theory), origin of species	1	
	Sexual selection	Introduction, sexual characters (primary and secondary), Theories, Objection	1	Futuyma; Ridley.
	Basic concepts of molecular evolution	Introduction, evolution of haemoglobin, evolution of cytocrome c, multigene families, nucleic acid phylogeny molecular clock, significance	1	

Biogeography	Zoo-geographical	Biogeography: Introduction, regions (Oriental,	6.5	Verma;
and	realms (Horizontal or	Palaearctic, Ethiopian, Australian, Neotropical and		Brown & Mank;
Distribution	Superficial): Australian,	Nearctic region)		Arora;
(13 hrs)	Ethiopian, Palaeartic,	Regions: Introduction, physical features, climates,		Cox & Moore.
	Nearctic, Neo-tropical	characteristic fauna (fishes, amphibian, reptiles, aves,		
	and Oriental with	mammals), their sub-realms with their characteristic fauna		
	characteristic fauna.	of all the regions.		
	Bio-geographic			
	processes. Sub-realms.			
	Patterns of geological			
	distribution of animals			
	Bathymetric	Introduction about vertical distribution of animals.	0.5	
	distribution			
	Geo-biotic or	Introduction, forest (Tropical Rain Forest, Deciduous	1.5	
	Terrestrial Realm	Forest and Coniferous Forest with important fauna),		
		Prairie or Grass lands with characteristic fauna, Steppes		
		with characteristic fauna, Desert with characteristic fauna,		
		Tundra with characteristic fauna, Polar regions with		
		characteristic fauna.		
	Halo-biotic realm	Introduction, Characteristic fauna of Strand zone or	1.5	
		intertidal zone, Flat sea or Shallow sea zone, Pelagic zone		
		and Abyssal zone.		
	Limno-biotic realm	Introduction, Characteristic fauna of Lotic water (Running	1.5	
		water), Lentic water (stagnant water), lakes and ponds.		
	Inter – migration of	Introduction, types of migration, initiation of migration,	1.5	
	animals	Orientation and navigation, Tools for studying migration.		
Embryology	Embryonic cell	Overview, Stem cells differentiation – Totipotent,	1	Balinsky.
(10 hrs)	differentiation	Pluropotent and Multipotent		
	Embryonic induction	Overview, Types – Endogenous and Exogenous induction,	1	
	and evocators	organizer, mechanism and theories of neural induction		
	Development of brain,	Embryonic induction in different chordates, Development	3	
	eye and heart in	of Brain, eye and heart.		
	vertebrates			

	Embryo transfer.	Male and female infertility, treatment for infertility, IVF, process of embryo transfer, success rate, ethical	2	Keith & Persaud; Singh.
	Haemolytic diseases in the newly born human	Erythroblastosis Fetalis Causes, treatment. Concept of secondary response.	1	
	Recent developments in embryology.	Gamete intra- fallopian transfer (GIFT),Zygote intra- fallopian transfer(ZIFT) Donor insemination(DI),Egg donation, Surrogacy, Sub-zonal insemination(SUZI) or Micro- insemination sperm transfer (MIST),amniocentesis	2	
Ethology (10 hrs)	Stereo- and Acquired types.	Behavior Studied Approach : Introduction on 1. Theory of Evolution by Natural Selection, 2. Comparative Method, 3. Theories of genetics and Inheritance, 4. Behavioral Ecology, 5. Sociobiology	0.5	Alcock; Hinde .
		Genetically controlled behavior or Instinctive behavior or Natural Behavior (Stereo=tape player !) Info on IRM (Innate releasing mechanism), FAP (Fixed action pattern) and MAP (Modal action patterns). Instinct or instinctive behavior, Cooper experiment (1957)- Mason wasp. Genetics and behavior, Hormones and early development, Aggressive behavior of Sticklebacks fish, Nature/Nurture Epigenesis Acquired Behavior: Types of learning- 1. Habituation, 2. Classical and operant conditioning (Pavlov dog expt.), 3. Operant Conditioning (rat/Skinner box expt.), Comparison in classical and operant conditioning, Other aspects of learning (7 types with examples of each categories) Introduction on: Phylogeny of learning (Protozoa- Mammals), Neural Mechanism of learning (Brain and specific site of response), Concept of Memory	2 1.5 1	
	Social behavior	Social group: types, advantages, evidences, introduction of some characteristics: Hierarchy: Leadership, dominance \ dominance chart, Monogamy, Polygamous, Polyandry social systems	1	

Reproductive behavior	Sexual selection, Courtship, display, Inter and Intra-sexual	1.5	Alcock;
(courtship, Parental can	e, selection, Bruce effect, Parental care, Seasonality and		Hinde.
and role of Pheromone) timing in animals' Reproduction basically among Birds and		
	mammals. Pheromones and reproduction, Olfactory system		
	and pheromones, Triggers of Innate Behavior		
Agnostic behavior	Form of agonistic behavior: 1. Territorial, 2. Dominance,	1	
	3. Sexual, 4. Parental 5. Parent offspring (weaning,		
	disciplinary), 6.Predatory (including cannibalism), 7. Anti-		
	predatory.		
	Ways of expression, Factors in aggression: 1. Internal		
	factors - a. Limbic system, b. Hormones, c. Genetics, 2.		
	External Factors - a. Learning and experiences, b. Pain and		
	frustration c. Social factors		
Migratory behavior	Migration - Definition, Preparation phase, Evolution of	1.5	
	Migration, Migration pattern and species, examples.		
	Orientation and Navigation- Definition, features and		
	properties to orient and navigate		

References

Alcock, John (1993). Animal Behavior: An evolutionary approach, Fifth edition. Sinauer Associates. Inc. MA, USA.

Andrew, Ferguson (1980) Biochemical systematics and evolution, Blackie Publ., London

Arora. Organic evolution, Himalaya Publication.

Balinsky, B.I. 1970. An Introduction to Embryology. W.B. Saunders, London.

Beach, F.A. (1952). Patterns of Sexual Behaviour, Eyre and Spottis Woode, London.

Brown, H. J. & Mank. Biogeogrphy

Charles, R.H. (1982). Fundamental concepts in the design of experiments, Holt, Rinechart and Wintson, New York.

Cox, C.B. & Moore, P.D. Biogeography.

Dobzhansky, T. (1976). Genetics and Origin of species, Columbia University, USA.

Dobzhansky, T., Ayala, F.J., Stebbins, G.L and J.W. Valantine (1976). Evolution, Surjeet Publ. New Delhi.

Futuyma, Douglas J. (1998). Evolutionary Biology (3rd Edition), Sinauer Associates, New York.

- Futuyma, Douglas J. (2005). Evolution, Sinauer Associates, New York
- Gupta, P.K. (Reprint 1998). Genetics, Rastogi Pub., Meerut.
- Hinde, A. Robert (1970). Animal Behavior: A synthesis of ethology and comparative psychology, Second edition. McGraw-Hill Inc. USA.
- Keith, M. & Persaud, T.V.N. (2013). The Developing Embryo. 9th edition.
- Laurence, D. Mueller (2005). Evolution and Ecology of the Organism, Prentice Hall, New York .
- Manning, (1967). An Introduction to Animal Behaviour, Arrold, London.
- Michael R. Rose and Moore, J.R. (1979). Ideas in modern biology, Nati. History Press.
- Ridley, M. (1993). Evolution, BlackWell Science Massachusetts, USA.
- Ridley, M. (2003). Evolution (3rd edition), Blackwell Publishers, New York .
- Sather and Gallont (1973) Biology, The Behavioural View, Exington Mars, USA.
- Singh, I. (2012) Human embryology

Semester II

Course Title: Ecology & Natural Resources Course No: Zoo 552 Nature of the Course: Theory

Objectives

- To impart advance knowledge to the M. Sc. students with ecological principles and their functional aspects.
- To explore the knowledge of natural resources

Credits: 3 Lecture hrs: 45 Full marks: 75 Pass marks: 37.5

Unit	Sub-unit	Description of content of the sub-unit (depth)	Lec.hrs	Text/Ref. for the
				topics
Ecological	Concept of limiting	Basic knowledge about ecological limiting factors, their	0.5	Smith;
Limiting	factors	importance and suitable examples		Odum;
Factors	Liebig's law of	Statement, examples and criticism	1	Krebs;
(5 hrs)	minimum			Begon et al.
	Shelford law of	Statement, Examples (specific level of tolerance in organism)	1	
	tolerance			
	Combine concept of	Statement of combine concept (Law of minimum and law of	1	-
	limiting factors	tolerance)		
	Physical limiting factors	Role /importance of soil, water, temperature (more detail)	1.5	-
		,light, humidity, wind for the organism more emphasis with		
		animals at least one suitable example.		
Ecological	Nature of energy	Energy, ecosystem energy, sources, laws of thermodynamics	1	Smith;
Energetics	Primary production:	Primary production, production process, biomass production	3	Odum;
(8 hrs)	measurement and factors	and accumulations		Krebs;
	affecting primary	Factors affecting Primary Productivities		Begon et al.
	productivities	Methods of measurement of primary productivities in aquatic		
		and terrestrial ecosystem		
	Secondary production	Concept, measurement and factors affecting Secondary	1	-
		Productivities, Concept and types of ecological efficiency		
	Primary and secondary	Primary and Secondary productivities in terrestrial and	1	Odum;
	productivities in	aquatic environments		Smith;
	terrestrial and aquatic	•		Sutherland;
	environments			Krebs.
	Energy flow and models	Concepts of energy flow, food chain and food webs	2	
	of apargy flow	Models of energy flow, root chain and root webs	2	
	of energy now	models: Single channels, double channels and Universal		
		moders. Single chamiers, double chamiers and Universal		
Population	Properties of	Introduction, density and patterns of dispersion, Dispersal	2	Odum;
Ecology	populations: Density:	movements: emigration and immigration, Age structure, sex		Smith;
(8 hrs)	measurement of density;	ratio, Natality, Mortality and survivorship curves.		Sutherland;
	patterns of dispersion,			Krebs.

	Age structures, Sex			Odum;
	ratios, Natality and			Smith;
	mortality, Emigration			Sutherland;
	and immigration			Krebs.
	Measurement of density	Absolute Density: Total count, quadrate, transects, Mark-	2	-
		Recapture methods,		
		Measuring Relative Density: Traps, fecal pellets, vocalization		
		frequency, catch per unit efforts, number of artifacts,		
		Questionnaires, percentage ground cover, roadside count.		
	Concept of population	Concept of population growth, net reproductive rate (R _o) and	2	-
	Growth and regulation,	Intrinsic rate of increase (r), phases of population growth		
		(exponential phase, transitional phase and plateau or		
	Concept of Carrying	stationary phase).		
	Capacity	Population dynamics: exponential population growth,		
		Logistic growth and Time lags; r and K strategy.		
		Population regulation: Density dependent regulation,	2	Odum;
		density independent regulation, population fluctuation and		Smith;
		cycles.		Sutherland;
		Concept of carrying capacity and environmental resistance,		Krebs.
		Natural regulation of population size: Density dependent		
		school, density independent school and intrinsic regulation		
		school.		
Community	Community concept	Concept about biotic community (definition and examples)	1	Odum;
Ecology				Smith;
(10 hrs)	Community	Species diversity, Dominance, Keystone species, Growth		Sutherland;
	characteristics	form and structure, Dynamisms(change in community		Krebs.
		structures), Relative abundance, Trophic structures		
	Community structure	Introduction, Horizontal and vertical stratification:	1	-
		examples: Zonation in aquatic habitats (Littoral, Limnetic,		
		profound zones), Forest communities (Trees, Shrubs,		
		Herbaceous vegetation Herbs under tree, insects pests, Forest		

		floor decaying matter (litter), soil insects , bacteria , fungi etc		
		which participate in decomposition Subterranean sub division		
		having rich humus, fungi, bacteria, soil nematodes, protozoa		
		etc.		
	Dominance	Concept of ecological dominance and its ecological	1	
		significance, indices		
	Species richness	Concept, trends in species richness: (***species area curve)	1	-
	Equitability	Concept, ecological significance , index to calculate evenness (*** evenness index)	1	_
	Heterogeneity	Concept and ecological significance of environmental heterogeneity and species richness		
	Community	Concept, classification based on temperature and rainfall- [1	Odum;
	classification	tropical, temperate, deserts, tundra], based on types of		Smith;
		habitats[Terrestrial, aquatic)		Sutherland;
	Ecotypes	Concept explanation with examples, ecological significance	1	Krebs.
		(significance in natural selection)		
	Ecotones	Introduction	1	
		Boundaries of ecotones: Natural & Human generated		
		Scale of Ecotone: Biome ecotone, Landscape ecotone, Patch		
		ecotone, Ecological characters of ecotones and tools to		
		detects the ecotones (GIS, remote sensing)		
	Edge effect	Introduction, ecological characters, types(natural and induced), examples	1	-
	Ecological indicator	Concept, significance and suitable examples of indicator species	1	-
	Trophic relation in community	Introduction, food web and food chain with examples.	1	
Ecological	Positive and Negative	Mutualism, Commensalism, Proto-cooperation, Neutralism,		Krebs;
Interaction	interactions	Predation, Parasitism, Competition, Antibiosis	1	Odum:
(3 hrs)	Co-evolution	Introduction, types, example	0.5	,

	Group selection	Introduction, examples	0.5	Miller
	Evolution of ecosystem	Strategy of ecosystem development, concept of climax,		
		evolution of ecosystem	1	
Natural	Renewable and Non-	Resources, Human ingenuity, Economics, Cultural beliefs,	1	
Resources	renewable resources	types, Perpetual, Renewable and non- Renewable. Glimpse of		
(11 hrs)		World Population and of Nepal.		
		Forest: Importance, Classification, Value, Info on Sustainable		
		forest Management (SFM), Forest Resources, Forest		
		categories and protected areas, major forest types as per	2	
		Ecological Zones of Nepal,		
		Wildlife: Status, importance, value (ecological, cultural,	2	
		commercial), and local usage, ecological distribution in Nepal,		
		human influence on wildlife.		
		Rangelands: Rangeland resource, zonal categories,	1	
		Biodiversity and Endemism		
		Water, Sun and Air resources: Introduction, usage and		
		impact.	1	
	Major Human impacts on	Deforestation, human induced vegetation change, optimistic	1.5	
	Environment	results of human intervention, global examples (Agroforestry		
		and management)		
		Soil: Properties, Types, categories in Nepal. Soil erosion and	15	
		type, landslide, type, cause, impact, mitigation and preventive	1.5	
		measures and practices in Nepal.		
		Ozone-layer depletion: Introduction, Ozone Layer Protection,	1	
		International - Vienna Convention and the Montreal Protocol		

References (Latest editions)

- Chalise, M.K. (2013). Mountain Ecology and Natural Hazards. A book for part of M.Sc.. Ecology. Nepal Biodiversity Research Society, Lalitpur. p. 95+6. Reprinted 2nd edition 2014.HMG 2002.
- Chalise, M.K. (2013a). Wildlife Ecology and Policies of Nepal. A book for part of M.Sc.. Ecology. Nepal Biodiversity Research Society, Lalitpur. p. 67+7. Reprinted 2nd edition 2014.

- ICIMOD (1995). Rehabilitation of degraded lands in mountain ecosystem of the Hindu Kush Himalayan region. Proc. Int. Workshop. Edited by. Pei Shengji, ICIMOD/KIB/CAS. ISBN: 92-9115-404-0. Nepal.
- Krebs, C. J. Ecology, Harper International Ed., New York.
- Miller, J.K. Living in the Environment, Wordsworth Pub. Co. Belment, California.
- Nepal Biodiversity Strategy. His Majesty's Government of Nepal, Ministry of Forests and Soil Conservation, Kathmandu.
- Odum, E. P. Fundamentals of Ecology, W. B. Saunders Company, Philadelphia and London.
- Pradhan, B.K. 2007. Disaster Preparedness for Natural Hazards: Current Status in Nepal. ICIMOD, ISBN 9789291150304. P.96
- Ramade, F. Ecology of Natural Resources, John Wiley, New York.
- Sharma, C.K. 1990. Geology of Nepal Himalaya and Adjacent Countries. Kathmandu.
- Smith, R. L. Ecology and Field Biology. Harper Collins.
- Stiling ,P Ecology -Theories and Applications,4th edition Prentice –hall of India Private Limited ,New Delhi.

Semester II

Course Title: Research Methodology I & Biostatistics Course No: Zoo 553 Nature of the Course: Theory Credits: 3 Lecture hrs: 45 Full marks: 75 Pass marks: 37.5

Objectives

- To impart knowledge to the students with the importance of research and research methodology.
- To make the students acquaint with the use of Biostatistics in research fields in Zoology.

Unit	Sub-unit	Description of content of the sub-unit (depth)	Lectures	Text/References
Research	Introduction	Research: purpose, characteristics, research &	1	Bailey;
Methodology (10		knowledge, steps in research process, scientific		Gupta;
hours)		communication		Kothari;
	Identification of the	Identification of research problem, stating the problem,	1	Singh.
	research problem	characteristics of good research problem, ways of		
		formulating research problem		
	Literature review	Systematic literature review, strategies for writing	1	
	Referencing	literature review (why, how, what), sources of		
		literature		
		Referencing (why, style, in-text citation, reference		
		listing). Referencing software- EndNote, RefWorks		
	Research objectives	Meaning, characteristics, need and types of research	1	
		objectives, stating research objectives		
	Hypothesis	Introduction, importance of research hypothesis,	1	
		characteristics of testable hypothesis, sources and types		
	Desserab design	Of hypothesis	2	-
	Research design	Important features, concepts relating to research	2	
		design, basic principles of research design, concept of		
		different research designs, Important experiment		
		designs: Informal experimental designs (Before-and-		

		after without control design, After-only with control		
		design, Before-and-after with control design) &		
		Formal experimental designs (Completely randomized		
		design, Randomized block design, Latin square design		
		& Factorial designs)		
	Sampling Methods.	Sampling, methods and sample size	1	
	Sampling and sample			
	size			
	Data Sources, Analysis,	Data Sources, Analysis (softwares & tools),	2	
	Interpretation, and	Interpretation and Presentation (tables & charts)		
	Presentation			
Biostatistics (35 hours)	Introduction and	Introduction to biostatistics and scopes	1	Bailey;
	concepts			Bishop;
	Sampling techniques.	What, how, when, why (definition and implications,	2	Gupta.
	Sampling distribution.	types of sampling/design with examples)		
	Frequency distribution.	What, how, why (definition/introduction, univariate	1	
		frequency distribution, bivariate frequency		
		distribution, frequency distribution table, and		
		application and examples)		
	Presentation of data.	What, how, when, why (Tabular presentation and	1	
		graphical presentation of data – bar diagram,		
		histograms, pie chart, line graphs and examples)		
	Measures of Central	Introduction; Mean, Median, and Mode and	3	
	tendency.	Construction of formula; partition value, uses,		
		Examples		
	Measures of Variation	Variance and standard deviation; calculation steps and	2	
		examples		
	Probability	Introduction to probability, application and examples	2	
	Correlation	Introduction, types, uses, methods of studying	3	
		correlation: scatter diagram method, Karl Pearson's		

	coefficient of correlation (properties, assumptions,	
	interpretation, computation), Probable error,	
	correlation in bivariate frequency table, Rank	
	correlation method (limitation, computation), examples	
Regression	Introduction, linear & non-linear regression, lines of	2
	regression, coefficient of regression, uses & examples	
Hypothesis testing.	What (definition and types), How (different tests),	2
	types of errors, Parametric and Non-parametric tests	
Chi-square test.	Components, construction of formula; test conditions,	3
	Degree of freedom, P value/Confidence level,	
	Calculated value, Tabulated value, Decision and	
	Examples	
	Contingency Table types and examples	
Student t-test	Components, construction of formula; Assumptions,	3
	Degree of freedom, P value/ Confidence level,	
	Calculated value, Tabulated value, Decision and	
	Examples	
F-test	Components, construction of formula; Assumptions,	1
	Degree of freedom, P value/Confidence level,	
	Calculated value, Tabulated value, Decision and	
	Examples	
Analysis of Variance	Models – One way Model, Two way Model and Three	7
(ANOVA)	way Model and their constructions with description of	
	each term	
	Work out examples for each model with steps	
Experimental design	What (classification, types and examples – Simple	2
	design CRD, RBD, LSD, simple factorial), Complex	
	Design (Split Plot Design, Balanced Incomplete Block	
	Design, Nested Design)	
	Others: what should a researcher prepare for an	
	experimental design?	
	 – Recognition and statement of problems 	

 Selection of response (output) variables 	
 Choice of input variable 	
 Choice of factors and levels 	
 Choice of design 	
 Performing experiment 	
– Data analysis	
 Data base decision making 	

References

- Bailey, N.T.J. (1995). Statistical Methods in Biology, London.
- Bishop, O.N. (1984). Statistics for Biology, Longmann, New York.
- Gupta, S.C. (1995). Fundamentals of Statistics Latest Ed., Indira Gupta (Ed.) Himalayan Pub. House Bombay, India.
- Hicks, R.C. (1982). Fundamental Concepts in the Design of Experiments. Holt. Rinehart and Winston, NY.
- Kothari, C.R. (1990). Research Methodology, Second Ed. VishwaPrakashan, India.
- Singh, M.L. (1998). Understanding the Research Methodology Statistical Methods.

Semester II

Course Title: Cell & Molecular Biology and Genetics Course No: Zoo 554 Nature of the Course: Theory Credits: 3 Lecture hrs: 45 Full marks: 75 Pass marks: 37.5

Objectives

- To impart advance knowledge of present day in molecular and cell Biology.
- To provide knowledge on some important aspects of Genetics.

Units	Sub-units	Detail description of the sub-units	Lec.	References
			hrs.	
Cell Biology	Structure and	Molecular models of cell membrane: Danielli and Davson, Robertson,	1	DeRobertis and
(10 hrs)	function of cell	Fluid Mosaic. Organization of plasma membrane- major lipids,		De Robertis Jr;
	membrane	membrane proteins, mobility of membrane components. Basic		Roy and De.
		functions		
	Membrane	Nature of molecules, Feature of membrane transport, membrane	1	
	transport principle	transporters- pores, carrier proteins and channels, principles of Active		
		and passive transport		
	Vesicle ransport	Endocytosis- Pinocytosis: fluid phase and receptor mediated,	1	
	by secretion and	Phagocytosis: Zipper hypothesis and clathrine mediated endocytosis		
	endocytosis	Exocytosis - secretion of macromolecules-exocytotic pathway		
	Cell metabolism	Catabolic and anabolic cell metabolism, cellular respiration, Glycolysis:	1	
		Reaction steps and stoichiometry of glycolysis.		
		Stages of cell respiration (1. Oxidative decarboxylation of pyruvate to		
		acetyle coA 2. Citric acid cycle (kreb's cycle) and 3. Oxidative		
		phosphorylation		
	Signal molecules	Overview of cell signaling, Modes of cell signaling	1	Berridge
		Signal molecules – Hormones, Growth factors, Neurotransmitters		
	Receptors in	Major types – G-protein coupled, ion-channel, Tyrosine Kinases linked,	1	
	membrane	Intrinsic enzymatic activity		

	Second messenger	Important second messengers – cAMP, cGMP and Phospholipids	1	Berridge
	Role of signal molecules in gene activation	Signal transduction cascade, Response to signaling – alteration of gene expression, physical and biochemical response.	1	-
	Signaling pathways	Important signaling pathways - MAP kinase, NF-kB, and Hedgehog, Interaction between signaling pathways	1	-
	Cell cycle	Overview of cell division, Phases – Mitotic (M) and Interphase (G1, S and G2) Cell cycle control, Molecular mechanism of cell cycle regulation.	1	DeRobertis and De Robertis Jr.
Genetics (11hrs)	Mendelian and Non-Mendelian – Sex linked traits	Mendelian Sex linked traits: Gene Vs Allele, single & multiple gene, sex determination, understanding probabilities, Punnett Square	2	Singh; Verma & Agarwal; Gupta;
		Non-Mendelian – Sex linked traits - codominance, recombination,epitasis, cytoplasmic inheritance	3	Jones and Karp.
	Genetic variability General concept of Karyotype Analysis	Genetic variability. Karyotype Analysis-Human genome. Turner's syndrome, sickle cell anemia, cystic fibrosis	1	
	Genetic linkage and Linkage maps	Genetic linkage: Concept of genes present on same chromosome or different chromosome. Linkage maps: LOD score method for estimating recombination frequency (drosophila, human).	2	
	Gene and Chromosome mutations	Gene mutation - Missense, Nonsense Insertion, Deletion, Duplication,Frameshift , Repeat expansion.Chromosome Mutation - Chromosome Structure ChromosomeStructure Changes (<i>Translocation: Deletion: Duplication:</i> Inversion: Isochromosome:) Chromosome Number Changesaneuploidy polyploidy. Trasnsgenic animals	1	
	Population Genetics: Inheritance of qualitative traits	Population Genetics: gene/allele frequency, natural selection, mutation, gene flow gene pool, genetic drift, adaption and speciation.	2	
	Gene and Genotypic frequency	Calculation by using formulae; $p + q=1$ and $p^2+2pq+q^2=1$	1	Singh; Verma & Agarwal; Gupta;

	Hardy and Weinberg principle	Law and equilibrium. Genotype Vs phenotype,	1	Jones and Karp.
Molecular Biology (12 hrs)	Structure and Properties of Nucleic Acids	Organization of DNA and RNA in Eukaryotic Chromosomes. Types of Nucleic Acids: Deoxyribonucleic acid-DNA and Ribonucleic acid- RNA. Structure of DNA: Chemical composition of DNA and Molecular Structure of DNA. Replication of DNA. Structure and types of RNA: Messenger RNA (mRNA, Ribosomal RNA (rRNA) and Transfer RNA (tRNA).	2	DeRobertis and De Robertis Jr ; Rostogi; Turner et al.
	Central Dogma: Transcription and Translation	The Central Dogma: Definition and process. Transcription and Translation. Mechanism and Process of DNA Synthesis: Replication, Reverse Transcription, DNA Repair. Stages of DNA Replication: Initiation, Elongation and Termination. RNA Synthesis and protein Synthesis.	2	
	Structure of Eukaryotic chromosome : Satellite DNAs, Micro-Macro satellite DNA, Nuclear gene, Repeated DNA sequence, Mobile DNA	Structure of Eukaryotic chromosome: Structure and Structural Arrangement of Eukaryotic chromosome DNA Packing System. Satellite DNAs, Micro-Macro satellite DNA, Nuclear gene, Repeated DNA sequence, Mobile DNA or Transposons, types and Evolution of Transposons.	1	
	Molecular Techniques: RFLP, RADP, DdNA Amplification.	RFLP: Definition, Method, and Application, RADP: Definition, Method, Applications Limitations., DdNA Amplification.	1	
	PCR technology and its application	Principles, The Cycling Reactions: Three Major Steps in PCR, PCR Reactions Components, Application of PCR. Technology	1	
	DNA Sequencing	Definition. Types: The Chemical Method (Maxam-Gilbert method) and The Chain Termination Method (Sanger dideoxy method).	1	DeRobertis and De Robertis Jr ;

	Restriction and	Definition of Restriction Map, Process of Making Restriction Map.	1	Rostogi;
	Molecular Genetic Maps	Definition and process of making Molecular Genetic Map.		Turner et al.
	Types of Cloning	What is cloning, Types of Cloning, Merits and Demerits of Human Cloning.	1	_
	Recombinant DNA Technology	What is Recombinant DNA Technology?History and Process of Recombinant DNA Technology.	1	
	Transgenic animals	Concept, Gene Transfer Methods: 1. Microinjection Method, 2. Retroviral Vectors Method, 3. Embryonic Stem Cells Method. Transgenic Animals, Applications or Significance of Transgenic Animal production.	1	
Aging (6 hrs)	Theories of ageing	Definition, senescence, theories of aging; programmed theories (programmed senescence, endocrine, immunology theory), Error theories (wear and tear, rate of living, cross-linking, free radical, error catastrophe and somatic mutation theory).	2	Edward and John; McDonald
	Mechanism of aging- Intracellular, Extracellular and Molecular levels	Aging at the cellular level, validity of cell culture findings, specific cellular changes during aging (membrane changes, nuclear changes, cytopalsmic changes, ribosomal changes, mitochondrial changes, lysosomal changes), age associated changes in cell-cell interaction, the highway to death, pathways of regulating aging process, house keeping mechanism –autophagy	3	
	Mental aspects of aging- psychosocial theories; full life theories and mature life theories	psychosocial theories; full life theories and mature life theories	1	_
Introduction of Genetic Diseases (6 hrs)	Cancer	Introduction, causes of cancer-external factors (chemicals, radiation, viruses and life style), internal factors-hormones, immune conditions, and inherited mutations; Theories-cellular change/mutation theories, carcinogens, oncogenes/ protooncogenes; risk factors, molecular basis of cancer, types of cancers-classification of cancer, detection and prevention.	1	Weinberg.

Apoptosis	Cell death by injury, cell death by suicide, why should a cell commit suicide? What makes a cell decide to commit suicide? necrosis vs apoptosis, stages of apoptosis, apoptosis pathways, major players in apoptosis, apoptosis signaling, regulation of apoptosis, importance of apoptosis.	1	Conradt, and Xue
Hypertension	Introduction, causes and risk factors of hypertension, genetic mechanism in hypertension, prevention.	1	Richard et al.
Diabetes	Introduction, types of diabetes, causes and risk factors, biochemical and molecular mechanisms of diabetes.	1	Daniel DaSilveira
Parkinson's disease	Introduction, primary known causes, pathophysiology, potential mechanisms, catecholamine biosysnthesis, PD vs Parkinsonism, clinical features, therapeutic approaches	1	Cavalli et al.
Alzheimer's	Overview, symptoms, risk factors, molecular mechanisms,	0.5	Cavalli et al.;
disease	pathophysiology, pathogeneic hypothesis, therapeutic approaches.		Bndson (eds),
			Kowall (eds)
Huntington's disease	Introduction, clinical features, genetics, therapeutic approaches.	0.5	Cavalli et al.

References

- Andreas, Gewies. 2003. ApoReview Introduction to Apoptosis.
- Andrew, E. Bndson (eds), Neilw Kowall (eds)-Wiley. The hand book of Alzheimer's disease and other dementias-
- Andrew, G Renehan, Catherine Booth, Christopher S Potten. What is apoptosis, and why is it important?
- Berridge, M. J. (2009). Cell Signaling Biology, Portland Press Limited.
- Conradt, B. and Xue, D. Programmed cell death (October 06, 2005), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.32.1, http://www.wormbook.org.
- DeRobertis, D.P. and DeRobertis E.M.F.Jr.(1998). Cell and Molecular Biology, 8th Ed. B.I. Warerly Pvt. Ltd., New Delhi.
- Edward, L.S. and John, W.K. (1996) (4th Ed.) Hand book of the Biology of Ageing, Academic Press.
- Edward, L.S. and John, W.K. Hand book of the Biology of Ageing, Academic Press.

Gupta, P.K. (Reprint 1998) Genetics, Rastogi Pub., Meerut.

Jones, R.N. and Karp, A. (1986) Introducing Genetics, John Murray, London.

- Rager, B. McDonald. Biology of Aging.
- Robert, A.Weinberg. Biology of Cancer.
- Rostogi, S.C. (1996) Cell and Molecular Biology, New Age Int. (P) Ltd. Pub., New Delhi.
- Roy, S.C. and De, K.K. (1997) Cell Biology, New Central Book Agency, New Delhi.
- Singh, B.D.(2007). Fundamentals of Genetics, Kalyani Pub.
- Turner, P.C., McLennan, A.G., Bates, A.D., and White, M.R.P. (1998). Instant Notes on Molecular Biology.
- Verma, P.S. & Agarwal, V.K. (2000). Cell Biology, Genetics, Molecular Biology, Evolution and Ecology
- Watson, J.D., Hopkins, N.H., Roberts, J.W., Steitz, I.A. and Weiner, A.M.(1998) Molecular Biology of the Gene, The Benjamin/Cuming Pub. Comp, USA.