Tribhuvan University Institute of Science and Technology 4 Years Bachelor of Science (B.Sc.) Programme B.Sc. 3rd Year Zoology

Course Title: BioinformaticsCourse No.: Elective Zool. 304Nature of Course: TheoryInstruction Lectures: 75Olimitic of the CourseCourse

Objectives of the Course:

At the end of the course, the students will be able to:

- understand what is bioinformatics
- Understand bioinformatics as the meeting point of computational science and biology
- understand Algorithms & Statistics for biological data analysis with the use of Biological Software
- align single and multiple biological data
- develop creativity of using biological data to solve so many problems related to computational science

Teaching materials required to fulfill the objectives are boards, charts, flex prints, overhead projector (OHP), power-point projector and other basic teaching materials prepared by teachers and as provided by the campuses.

Unit	Sub-units	Description of content of the sub-unit	Lectures	Text/Ref. for the
		(depth)		topics
				(for detail see the list
				of text & references)
Introduction to	Introduction, application, dawn of	f What is bioinformatics. Historical Review.	15	Attwood, T.K. &
Bioinformatics	sequencing, human genome	Applications. The dawn of sequencing. The		Parry-Smith, D.J.;
(15 Lectures)	homology and analogy	biological sequence/structure deficit. Basic		Lesk, A.M.;
	nomorogy and anarogy.	concept of genomics, genes, proteins, and		Pangeni, R.P.
		proteomes. Status of the human genome		
		project. Sequence analysis. Homology and		
		analogy.		

Full Marks: 50 Pass Marks: 17.5 Year: III

Information	Introduction, www, web Browsers,	What is internet? How do computer find each	7	Attwood, T.K. &
Networks	EMBnet and NCBI	others? Facilities used on the Internet. What is		Parry-Smith, D.J.;
(7 Lectures)		World Wide Web? Web Browsers: HTTP,		Lesk, A.M.;
		HTML and URLs, The European Molecular		Pangeni, R.P.
		Biology network (EMBnet). The National		
		Center for Biotechnology Information (NCBI).		
Protein	Introduction, Biological databases,	Introduction, Biological databases, Primary	5	Attwood, T.K. &
Information	Structure Classification databases	sequence data bases, Composite protein		Parry-Smith, D.J.;
Resources		sequence databases, Secondary databases,		Lesk, A.M.;
(5 Lectures)		Composite protein pattern databases, Structure		Pangeni, R.P.
		classification databases.		
Genome	Introduction, Human genome, DNA	Introduction. Human genome and other	3	Attwood, T.K. &
Information	sequence databases	genomes. DNA sequence databases.		Parry-Smith, D.J.;
Resources		Specialized genomic resources.		Lesk, A.M.;
(3 Lectures)				Pangeni, R.P.
DNA Sequence	Introduction, Features of DNA	Introduction, Features of DNA sequence	10	Attwood, T.K. &
Analysis	sequence analysis, EST, cDNA	analysis, Interpretation of Expressed Sequence		Parry-Smith, D.J.;
(10 Lectures)	library, EST analysis	Tags (EST) searches, Two approaches to gene		Lesk, A.M.;
		hunting, cDNA library and ESTs, Different		Pangeni, R.P.
		approaches to EST analysis, Effects of EST		
		data on DNA databases, A Practical examples		
		of EST analysis.		
Pair-wise	Introduction, Database searching,	Introduction, Database searching, Algorithms	10	Attwood, T.K. &
Alignment	Algorithms and programs, Identity	and programs, Comparing two sequences-a		Parry-Smith, D.J.;
Techniques	and similarity, Global and local	simple case, Identity and similarity, Global		Lesk, A.M.;
(10 Lectures)	alignment	alignment: the Needleman and Wunsch		Pangeni, R.P.
		algorithm, Local alignment: the Smith-		

		Waterman algorithm, Pair-wise database		
		searching.	10	
Multiple	Introduction, manual, simultaneous	Introduction, Manual methods, Simultaneous	10	Attwood, T.K. &
Alignment	and progressive methods, databases	methods, Progressive methods, Databases of		Parry-Smith, D.J.;
Techniques	of multiple alignment	multiple alignments, Searching databases with		Lesk, A.M.;
(10 Lectures)		multiple alignment.		Pangeni, R.P.
Phylogenetic	Introduction and methods	Introduction. Clustering and Cladistic methods.	4	Attwood, T.K. &
Trees				Parry-Smith, D.J.;
(4 Lectures)				Lesk, A.M.;
				Pangeni, R.P.
Secondary	Introduction	Introduction.	1	Attwood, T.K. &
Database				Parry-Smith, D.J.;
Searching				Lesk, A.M.;
(1 Lectures)				Pangeni, R.P.
Duilding o	Introduction a prostical approach	Introduction A gractical annuagh When to	2	Attime of TV 9
Building a	introduction, a practical approach,	Introduction. A practical approach. when to	3	Allwood, $1.K. \alpha$
Sequence	structural and functional	believe a result. Structural and functional		Parry-Smith, D.J.;
Search Protocol	interpretation	interpretation.		Lesk, A.M.;
(3 Lectures)				Pangeni, R.P.
Analysis	Introduction, Commercial database	Introduction. Commercial databases and	5	Attwood, T.K. &
Packages	and software, comprehensive	software. Comprehensive packages:		Parry-Smith, D.J.;
(5 Lectures)	packages.	specializing in DNA analysis, intranet and		Lesk, A.M.;
		internet packages.		Pangeni, R.P.
Ethics and	Ethics, and workflow management	Introduction. Ethics in Bioinformatics.	2	Attwood, T.K. &
Workflow	system in Bioinformatics	Workflow management systems in		Parry-Smith, D.J.;
Management		Bioinformatics.		Lesk, A.M.;
System				Pangeni, R.P.
(2 Lectures)				

Text Books

Pangeni, R.P. 2007. Concept on Bioinformatics. Sukunda Pustak Bhawan, Bhotahity, Kathmandu, Nepal.

- Attwood, T.K. & Parry-Smith, D.J. 1999 and 2014. Introduction to Bioinformatics (Cell and Molecular Biology in Action Series) published by Prentice Hall, edited by DR. Ed Wood, Department of Biochemistry and Molecular Biology, University of Leeds, UK.
- Lesk, A.M. 2003. Introduction to Bioinformatics. Oxford University Press, UK, printed in India by Gopsons, Noida 201301, Published by Manzar Khan, Oxford University Press, YMCA Library Building, Jai Singh Road, New Delhi.

References

Campbell, A.M. & Heyer, L.J. 2004. Discovering Genomics & Proteomics.

Leach, A. R. 2001. Molecular Modeling. Prentice Hall.

Andrew, J., Cammon, Mc., Harvey S. 1988. Dynamics of Proteins and Nucleic acids. Cambridge University Press.

Pevsner, J. 2003. Bioinformatics & Functional Genomics. John Wiley and Sons.

Pevzner, P.A. 2004. Computational Molecular Biology. An Algorithmic Approach PHI

Rastogi, S.C., Mendiratta, N., Rastogi, P. 2004. Bioinformatics, Methods and Applications. PHI Publication.

•••••